ECO:LOGIC

Consulting Engineers

Principals: David R. Bennett Charles G. Bunker Robert W. Emerick John P. Enloe Jeffrey R. Hauser Richard E. Stowell Gerry LaBudde

June Lake Public Utility District Water Resource Assessment

Technical Memorandum No. 5 Rodeo Grounds Groundwater Assessment

> Prepared for: Mono County Community Development Department

> > May 2007

ECO:LOGIC

TECHNICAL MEMORANDUM NO. 5

SUBTASK 1 GROUNDWATER ASSESSMENT

PREPARED FOR: Mono County Community Development Department

SUBJECT: Results of exploratory well drilling and test pumping.

- PREPARED BY: Dale C. Bugenig Thomas W. Butler PG, CHG, CEG
- REVIEWED BY: John Enloe, P.E. Mark Hanneman, R.G.
- DATE: May 14, 2007

PURPOSE AND SCOPE

The purpose of this subtask is to provide information regarding the groundwater resources potentially available to the proposed Rodeo Grounds development project. It examines the possibility of deriving the water supply for the project from wells on the property. The information contained within this memo is for review and discussion by Mono County Community Development Department (Mono County CDD).

ORGANIZATION OF THIS REPORT

This memo is organized into the following major sections:

- Summary and Conclusions
- Introduction
- Hydrogeologic Setting
- Well Drilling and Construction
- Well Testing
- Groundwater Chemistry
- Groundwater Availability

TABLE OF CONTENTS

page

SUBT	ASK 1 GROUNDWATER ASSESSMENT	1
1.0	SUMMARY AND CONCLUSIONS	1
2.0	INTRODUCTION	3
3.0	HYDROGEOLOGIC SETTING	6
3.1	WATER-BEARING CHARACTERISTICS OF THE ROCKS	6
4.0	WELL CONSTRUCTION SUMMARY	9
4.1 4.2 4.3 4.4 4.5	CHRONOLOGY LITHOLOGY CONSTRUCTION DETAILS WELL DEVELOPMENT PLUMBNESS AND ALIGNMENT	. 10 . 10 . 16
5.0	WELL TESTING	.17
5.3 5.3 5.	EQUIPMENT TESTING SUMMARY 2.1 Step-drawdown Testing 2.2 Constant-Discharge Testing PUMPING-TEST DATA ANALYSIS 3.1 Step-Drawdown Testing Results 3.2 Constant-Discharge Testing Results 3.3 Discussion of Constant-Discharge Testing Results	.17 .18 .20 .22 .22 .22
6.0	WATER QUALITY	.30
7.0	WATER SUPPLY AVAILABILITY	.33
7. 7.	LONG-TERM PRODUCTION WELL YIELD POTENTIAL IMPACTS FINGERPRINTING GROUNDWATER AND SURFACE WATER 3.1 Major Cations and Anions 3.2 Stable Isotope of Water 3.3 Evaporative Origin of Gull Lake and Source of Rodeo Grounds Groundwater 3.4 Gull Lake and Groundwater Mixing – Reversed Creek	.35 .37 .39 .40 .41

LIST OF FIGURES

FIGURE 1: LOCATION MAP	4
FIGURE 2: SITE MAP	5
FIGURE 3: GEOLOGIC MAP	7
FIGURE 4: RODEO GROUNDS WELL 1 CONSTRUCTION DIAGRAM	11
FIGURE 5: PHOTOGRAPH OF WELL 1 CHIP TRAYS	12
FIGURE 6: RODEO GROUNDS WELL 2 CONSTRUCTION DIAGRAM	13
Groundwater Availability	Page i

Groundwater Availability

Technical Memorandum No. 5

H:\Projects-Active\2005\MONO05-001 June Lake Water Assessment\Expl Wells\Report\Final June Lakes Test Wells Report.doc

FIGURE 7: PHOTOGRAPH OF WELL 2 CHIP TRAYS	14
FIGURE 8: WATER LEVEL DATA FOR WELLS 1 & 2	17
FIGURE 9: WELL 1 STEP-DRAWDOWN TEST WATER LEVEL DATA	18
FIGURE 10: WELL 2 STEP-DRAWDOWN TEST WATER LEVEL DATA	19
FIGURE 11: WELL 1 CONSTANT-DISCHARGE TEST DATA	20
FIGURE 12: WELL 2 CONSTANT-DISCHARGE TEST DATA	21
FIGURE 13: WELL 1 STEP-DRAWDOWN TEST ANALYSIS RESULTS	23
FIGURE 14: WELL 2 STEP-DRAWDOWN TEST ANALYSIS RESULTS	23
FIGURE 15: WELL 1 CONSTANT-DISCHARGE TEST ANALYSIS RESULTS	26
FIGURE 16: WELL 2 CONSTANT-DISCHARGE TEST ANALYSIS RESULTS	28
FIGURE 17: PREDICTED PERFORMANCE OF A PRODUCTION WELL AT THE LOCATION OF JUNE LAKE RODEO GROUNDS WELL 2	34
FIGURE 18: PREDICTED PERFORMANCE OF A PRODUCTION WELL AT THE LOCATION OF JUNE LAKE RODEO GROUNDS WELL 1	35
FIGURE 19: SPRING FLOW REDUCTIONS ASSOCIATED WITH JUNE LAKE RODEO GROUNDS WELL 2 TESTING	
FIGURE 20: IDENTIFICATION OF GROUNDWATER AND SURFACE WATER SAMPLICOLLECTED FOR GEOFORENSIC ANALYSIS	-
FIGURE 21: PIPER DIAGRAM ILLUSTRATING MAJOR WATER CHEMISTRY	39
FIGURE 22: PLOT OF THE STABLE ISOTOPES OF GROUNDWATER AND SURFACE WATER, THE GLOBAL METEORIC WATER LINE, AND MODELED EVAPORATION TREND	

LIST OF TABLES

TABLE 1:	WELL CONSTRUCTION SUMMARY	15
TABLE 2:	WELL 1 STEP-DRAWDOWN TEST SUMMARY	18
TABLE 3:	WELL 2 STEP-DRAWDOWN TEST SUMMARY	19
TABLE 4:	EXPLORATION WELL WATER CHEMISTRY DATA SUMMARY	30
	SUMMARY OF SELECT GENERAL CHEMISTRY, MAJOR CATIONS/ANIONS BLE ISOTOPES OF WATER	,

LIST OF APPENDICES

APPENDIX A	LITHOLOGIC LOGS
APPENDIX B	PUMPING TEST DATA AND ANALYSIS RESULTS (cd-rom)
APPENDIX C	LABORATORY RESULTS FOR WATER CHEMISTRY ANALYSES

1.0 SUMMARY AND CONCLUSIONS

- 1. Two exploratory wells were drilled on the property by the owner. Drilling was accomplished by air-rotary methods using down-the-hole hammers. The first well (Well 1) was drilled to the target depth of 600 feet. The second well (Well 2) was drilled to a depth of 387 feet. Both wells encountered groundwater in fractured metamorphic rocks. Well 1 derived groundwater from fractures in quartzite. Well 2 penetrated carbonaceous marble with a variable quartz sand content. Groundwater from Well 2 was derived from fractures in the marble. An estimated 175 gallons per minute (gpm) of groundwater was discharged from Well 1 by the time the target depth of 600 feet was achieved. Well 2 discharged more than an estimated 400 gpm by the time a depth of 387 feet was achieved. The large air-lift discharge from Well 2 caused drilling to be terminated before the target depth of 600 feet was reached.
- 2. Steel well casing with an outside diameter of 6 ⁵/₈ inches was installed to a depth of 220 feet in Well 1 and to a depth of 200 feet in Well 2. The purpose of the casing was to house the test pump and prevent damage to or loss of the pump in the event of a borehole collapse during testing. The casing also enabled installation of sanitary and annular seals in the space surrounding the casing. Cement grout was placed in the annulus surrounding the well casing in each well from the land surface to a depth of 100 feet.
- 3. The completed exploratory wells were subjected to a series of pumping tests. The testing program included step-drawdown tests followed by 24-hour constant-discharge tests. Well 1 was pumped at rates ranging from 50 to 63 gpm during step testing and at 40 gpm during the constant-discharge test. Well 2 was pumped at rates ranging between 57 and 195 gpm during step testing and at 180 gpm during constant-discharge testing.
- 4. The aquifer transmissivity (the overall ability of the aquifer to transmit groundwater) of the fractured quartzite aquifer materials penetrated by Well 1 was calculated to be 121 feet²/day (905 gallons per day per foot width of aquifer under a unit hydraulic gradient (gpd/ft)) and the coefficient of storage was estimated to range between approximately 0.03 to 0.05. These values are indicative of an unconfined to semiconfined aquifer with low transmissivity. Although the well penetrated fractured rock, it appeared to be fractured to the point that it responded to the stress of pumping similar to a porous medium.
- 5. The geologic materials penetrated by Well 2 exhibited a response to pumping that is referred to as "double-porosity" behavior. Double porosity describes fractured-rock aquifers comprised of randomly distributed porous blocks and fractures. Groundwater flow is associated with the fractures and storage is associated with the porous blocks. The transmissivity of the fracture portion of the porous-block-and-fracture aquifer was calculated to be 1,980 feet²/day (14,363 gpd/ft) and the storativity was estimated to be approximately 0.035. These results indicate the carbonaceous marble geologic unit penetrated by Well 2 is significantly more permeable than the quartzite penetrated by Well 1.
- 6. Samples of the groundwater were collected from each well near the conclusion of the respective 24-hour duration aquifer stress tests. The samples were analyzed for the

chemical and physical characteristics regulated under Title 22 of the California Code of regulations. Overall groundwater quality is good with one notable exception; the concentration of arsenic in the groundwater exceeds the maximum contaminant level of 0.010 milligrams per liter. The concentration of arsenic for groundwater derived from Well 1 was 0.024 mg/l and the concentration of arsenic for groundwater derived from Well 2 was 0.014 mg/l. The water will require treatment to remove arsenic if it is to be used as a source of water supply.

- 7. A production well completed at the location of Well 2 has the potential to yield 300 gpm on a continual basis for several months and at least 100 gpm on a sustained basis (160 acre-feet per year or 52.56 million gallons per year). A production well completed at the location of Well 1 has the potential to yield 33 gpm on a sustained basis. Although the evidence strongly suggests the water supply for the project can be developed from wells on the property, production wells must be drilled and test pumped for an extended period of time in order to gain a consensus from the California Department of Health Services and Mono County Health Department regarding the yield rating of the subsequent production wells.
- 8. A spring is located on the property approximately 1,000 feet south-southeast of Well 2. The discharge from the spring was influenced by pumping Well 2 and the spring discharge declined from 12 gpm to 6.5 gpm during the testing of Well 2. Upon conclusion of the pumping test, the spring discharge increased. The spring-flow data collected during testing of the exploratory wells suggest that extended pumping is not expected cause the spring to cease flowing altogether.
- 9. Physical and isotope geochemical fingerprinting of groundwater (Well 1, Well 2, the ski area well, and the spring), as well as, surface water samples collected from the outlet of Gull Lake and Reversed Creek, provide substantive evidence that groundwater within the project area is not in direct hydraulic communication with Gull Lake, even though lake water elevations are higher than that of groundwater. Additionally, Spring water is isotopically and chemically distinct from Gull Lake and most similar to groundwater assessed at Well 2.
- 10. The physical and isotope geochemistry, together with the lack of an observation well response in either Well 1 or Well 2 during test pumping, the lack of a response in the spring during Test Well 1 Pumping, and the *observed* response of the spring during Well 2 pumping, indicates horizontal aquifer anisotropy. Accordingly, groundwater flow towards the wells is likely derived from fractures, controlled by geologic structure, with an orientation and preferential groundwater flow (higher transmissivity) roughly parallel to the fold axes and towards the northwest-southeast.
- 11. Stream water sampled down gradient of Gull Lake and near the Spring indicates that groundwater is locally discharging to Reversed Creek (gaining stream).

2.0 INTRODUCTION

The proposed Rodeo Grounds project is located in Mono County approximately one mile southwest of the community of June Lake, California (Figure 1). The property occupies approximately 90 acres within Section 15, Township 2 South, Range 26 East, M.D.B.&M. near the intersection of the June Lake Loop and North Shore Boulevard (Figure 2).

The June Lake area is situated within the eastern Sierra Nevada. The elevation of the property ranges between approximately 7,500 and 7,800 feet above sea level. The Rodeo Grounds site is characterized by low ridges with moderate slopes. The property is essentially undeveloped.

Groundwater is one possible source of water supply to the project, the other being the June Lake Public Utility District. The owner elected to drill and test pump two exploratory wells on the property to assess the groundwater resources potentially available to the project. Mono County retained ECO:LOGIC Consulting Engineers to provide engineering and hydrogeologic services related to the acquisition of information and data needed to evaluate the groundwater resources potentially available to the project. This work included:

- Assisting with the planning of the drilling and testing program.
- Reviewing the technical specifications for the drilling and testing program.
- Monitoring the drilling and construction of the wells.
- Preparing lithologic logs of the boreholes.
- Orchestrating the pumping tests of the wells.
- Analyzing the test data.
- Assessing the water resources potentially available to the project and the likely performance of production wells.

Western Strata Exploration, Inc. (WESTEX) of Clarksburg, California was engaged by the owner to drill, construct, and test pump the wells.

This report summarizes the drilling, construction and testing of the wells. It provides an evaluation of the test data, documents the chemical quality of the groundwater derived from the wells, and assesses the groundwater resources potentially available to the project. This assessment includes estimates of long-term performance of production wells that might be constructed on the property near the sites of the exploratory wells. Obviously, the long-term performance of any production wells constructed on the property will need to be verified through a comprehensive pumping test program of those wells.

3-D TopoQuads Copyright ©1999 DeLorme Yarmouth, ME 04096

FIGURE 1: LOCATION MAP

FIGURE 2: SITE MAP

3.0 HYDROGEOLOGIC SETTING

The Geologic Map of the Mono Craters Quadrangle, Mono and Tuolumne Counties, California (Kistler, 1966) indicates that the geologic materials in the immediate vicinity of the Rodeo Grounds project area are primarily comprised of metamorphosed sedimentary rocks of the Gull Lake roof pendant. The metamorphic rocks formed when igneous rocks intruded Permian and Pennsylvanian-aged sedimentary rocks. On the property itself, the metamorphic rocks are overlain by till of Tioga glaciation (see Figure 3). The metamorphic rocks include quartzofeldspathic hornfels, carbonaceous marble, quartzite and calc-silicate hornfels. Locally, these have been intruded by the diabase of Reversed Creek and the quartz monzonite of Lee Vining.

The metamorphic rocks have been intensely deformed and folded into a northwesterly trending anticline west of the site and a syncline to the east. The anticline plunges to the southeast and the syncline plunges to the northwest. The beds dip steeply at more than 70 degrees. The deformation has resulted in large-scale fracturing and joints are visible where the rocks crop out at the cliffs northwest of the project.

The Rodeo Grounds property lies within the Reversed Creek watershed down-valley and west of Gull Lake, which in turn is west of June Lake. The elevation of Gull Lake is approximately 7,602 feet above sea level and the elevation of June Lake is approximately 7,621 feet above sea level based on the USGS topographic quadrangle (refer to Figure 2).

A developed spring is situated near the southeast corner of the property. Measurements taken during the course of this investigation show the spring discharges approximately 12 gpm.

3.1 Water-bearing Characteristics of the Rocks

Metamorphic and intrusive igneous rocks typically exhibit very little primary porosity and are relatively impermeable. Consequently, they usually do not store or transmit large quantities of groundwater compared to alluvial deposits or certain sedimentary rocks, nor do they typically yield large quantities of groundwater to wells. However, secondary porosity can develop if the rocks have been fractured due to deformation. Where the fractures or joints are interconnected, the rocks may develop significant permeability and yield moderate quantities of groundwater to wells. The metamorphic rocks in this area have been intensely deformed to the point that well-developed joints and fractures have been created. These are visible where the rocks crop out near the project. Fractures and joints can also develop as a consequence of faulting. No faults are mapped within the property boundaries, but the Silver Lake fault is located approximately one and one-half mile west of the property.

Under certain circumstances, solution channels develop in carbonate rocks where fractures and joints have been enlarged by dissolution of the rocks by groundwater flowing through the fractures. As a result, carbonate metamorphic rocks such as marble may exhibit greater permeability than silicate or calc-silicate rocks such as quartzite or hornfels. If so, they may yield more groundwater to wells than the other rocks in the area.

Fault Bar and ball on downthrown block; dashed where approximately boxbed; dotted where concealed

ATOS-Mylonite zone

Anticline axial plane and direction of plunge

_____ Overturned anticline « of axial plane and direction of plange ». Dashed where approximately located

Strike of vertical beds

Strike of vertical foliation

Strike and dip of eleavage

Strike and dip of vertical cleavage

.⁴⁹ Specimen locality of granitic rock with modal analysis

Qal, alluvium and pumice Qsl, landslide or inactive rock glacier Qts, talus and slopewash Qt, talus

Till of the Tioga Glaciation Dotted lines show moraine crests

Jw

Dioritc of Waugh Lake

Groundwater Availability Technical Memorandum No. 5 H:\Projects-Active\2005\MONO05-001 June Lake Water Assessment\Expl Wells\Report\Final June Lakes Test Wells Report.doc Page 7

Dashed where approximately I dotted where converted

Sameline plane and dir

Strike and dip of beds

23 Strike and dip of overturned beds

> ,86 Strike and dip of foliation

Strike and dip of foliation and parallel bedding

83 Strike and dip of joints

Trend and plunge of small fold or lineation

PIPh FIGURE 3: GEOLOGIC MAP Quartzofeldspathic hornfels PPm Carbonaceous marble PPq ilc-silicate hornfels, quartzite, and quartzofeldspathic hornfels PPc Marble and calc-silicate hornfels

Information obtained via the drilling of the two test wells on the property indicate that the rocks beneath the site are fractured. Evidence of fractures includes large drill cuttings that exhibit obvious planar surfaces and instances where the formation material sloughed into the borehole causing the drill rods to bind up and chatter loudly. Groundwater present in the rocks was discharged from the boreholes as a consequence of the drilling process and the rate of groundwater discharge increased as more fractures were encountered.

4.0 WELL CONSTRUCTION SUMMARY

Western Strata Exploration, Inc. (WESTEX) of Clarksburg, California was contracted by the owner to drill and test pump two exploratory wells on the Rodeo Grounds property. The wells were drilled using a truck-mounted Ingersol-Rand TH 60 rotary drill. The boreholes were drilled by air-rotary methods using down-the-hole pneumatic hammers. The wells were started with a Centrex[™] system that enabled drilling a 10 ³/₄-inch diameter borehole while advancing 10-inch diameter steel casing. The 10 ³/₄-inch diameter borehole was drilled through unconsolidated material overlying the bedrock. Once bedrock was encountered, the contractor switched to a conventional 8 ¹/₄-inch diameter hammer. Drilling by the air-rotary method allows for relatively fast drilling rates in consolidated rocks compared to other methods. It also allows for a determination as to where water is encountered and permits estimates of well production to be made from the air-lift discharge from the well as the borehole is advanced.

Composite samples of the formation materials penetrated by the boreholes were collected from the air-lift discharge at least every five feet and logged by the onsite geologist.

Water derived from the boreholes during drilling was contained and dispersed on site via sprinklers so that no water ran off the site during the project. Drill cuttings (primarily chips of the formation material) were dispersed on the land surface at each site.

4.1 Chronology

June 27, 2007	The drill rig was moved on site and set up at the western well site (Well 1). The 10 $\frac{3}{4}$ -inch diameter borehole was drilled and 10-inch diameter drive casing advanced to a depth of 67 feet. Below 67 feet, an 8 $\frac{1}{4}$ -inch diameter borehole was drilled to 107 feet.
June 28	The 8 ¼-inch diameter borehole was advanced to 447 feet.
June 29	The 8 ¹ / ₄ -inch diameter borehole was advanced to the target depth of 600 feet.
June 30	6 $\frac{5}{3}$ inch diameter well casing was installed to a depth of 220 feet below the land surface.
July 1	The annular space surrounding the well casing was filled with cement grout and the 10-inch diameter drive casing was extracted. The drill rig was moved to the eastern well site (Well 2). The 10 ³ / ₄ -inch diameter borehole was drilled and 10-inch diameter casing was advanced to a depth of 27 feet.
July 5	The 8 ¼-inch diameter borehole was drilled to a depth of 150 feet.
July 6	The 8 ¼-inch diameter borehole was advanced to 377 feet.
July 7	The 8 ¹ / ₄ -inch diameter borehole was advanced to 387 feet. Drilling was terminated due to large quantities of groundwater discharged from the well.
July 9	Well 2 was air-lift pumped to clean the borehole and 6 $\frac{5}{8}$ inch diameter blank well casing was installed to 200 feet.

Groundwater Availability

July 10	The cement annular seal was installed and the 10-inch diameter drive casing was extracted.
July 11	Test pumps were installed in both wells.
July 12	Data loggers were installed in both wells and the step test of Well 1 was performed.
July 13	The constant-discharge test of Well 1 commenced.
July 14	A water sample was collected. The Well 1 constant-discharge test was terminated and water levels in the well were allowed to recover overnight.
July 15	The step test of Well 2 was performed.
July 16	The constant-discharge test of Well 2 commenced.
July 17	A water sample was collected. The constant-discharge test was terminated and water levels were allowed to recover overnight.
July 18	Recovery data collection was terminated and data loggers were retrieved from the wells.

4.2 Lithology

Well 1

The borehole for Well 1 penetrated glacial outwash comprising a mix of clay, silt, sand, gravel and boulders of granitic, metamorphic and volcanic rocks to a depth of 57 feet below the land surface. Below 57 feet, the borehole penetrated white, grey, green, brown and black quartzite. An abbreviated lithologic log is provided Figure 4. A photograph of the chip trays containing cuttings from Well 1 is provided in Figure 5. The complete lithologic log of the borehole is provided in Appendix A. The quartzite appeared to be fractured on the basis of large (larger than 2 inches in size) drill cuttings with noticeable fracture-plane surfaces. Some of the fracture planes were coated with a soft yellow mineral, possibly limonite.

Well 2

The borehole for Well 2 penetrated glacial outwash to a depth of approximately 17 feet. Grey-colored calcareous quartzite or sandy marble was encountered between 17 and 70 feet below the land surface. No calc-silicate minerals were observed in hand specimen. At a depth of 70 feet, dark grey to black carbonaceous marble was encountered. The carbonaceous marble is presumed to be part of map unit PPc as map unit PPm has not been mapped near the wells. An abbreviated lithologic log for Well 2 is provided Figure 6. A photograph of the chip trays containing cuttings from Well 2 is provided in Figure 7. The marble appeared to be fractured on the basis of large (larger than 2 inches in size) drill cuttings with obvious fracture-plane surfaces. Some of the fracture planes were coated with a soft yellow mineral, possibly limonite.

4.3 Construction Details

The details of well construction for the two Rodeo Grounds exploration wells are summarized in Table 1 and illustrated in Figures 4 and 6.

Groundwater Availability

ECO:LOGIC Engineering

10381 Double R Boulevard Reno, Nevada 89521 775-827-2311 775-827-2316 Fax

Depth (Feet)

Well Construction

Project: June Lake Rodeo Grounds Location: NE 1/4 SW 1/4 Sec. 15, T. 2 S., R. 26 E. Well: Rodeo Grounds Well 1 Borehole Depth: 600 feet Diameter: 10 3/4" 0-67 ft, 8 1/4" 67-600 ft Drilling Contractor: Western Strata Exploration, Inc. Logged by: D. Bugenig Completion Date: 07/01/06

Lithology

FIGURE 4: RODEO GROUNDS WELL 1 CONSTRUCTION DIAGRAM

Groundwater Availability

Page 11

Technical Memorandum No. 5

H:\Projects-Active\2005\MONO05-001 June Lake Water Assessment\Expl Wells\Report\Final June Lakes Test Wells Report.doc

0.5	1	200-205	300 - 2+5 B. A.B.S.	40 · 405	In- nr WEIN
5. 10	105-110	205-210	ler- 34	45 410	ar 310 188 199
10-15 Ton	110-115	210-215	Ito- Itr	410- 415	510- Str
15- 20	115- 120	215-220	315- 320	415-420	515- 520
219-25	120-125	220-225	320- 325	420-412	510- 515
25- 30	125-130	225-230	325- 310	452- 1/20	54/5 536 W 10 10 10 10 10 10 10 10 10 10 10 10 10
72 - 02	130-135	230-235	330-326	420. 425	530- Str
35- 40	135- 140	315-240 OVS-215	327- 346	4125 · 440	SUS 510
40- 45	140-145	240-245	340 - 341-	140- 145	540-545
15- 9 TOT	145-12	245-20	345-350 025-34E	445. 450	CAR. 129
	150-155	200-203	10-155	450-455	111-612
55- 40	155-346	Canadas Harris	355-360	455-460	515-540
10-15 PT	150- 165	210-215	360- 265	140- 1115	suo sis
45-70	145- 170	215 - 270 Fail	Jur - 370	145- 970	565-570
70-71	170-175	270-24	W.L. oft	430-935	570-591
35-80	175-120	275. 280	and a street	475-100	SH-170
10. er	120-12	280-285	387 -385	410-115	599-585.
85-90	125-170	28 - 270	325-370	485-430	515-50 A.
90-95	190-195	2125	370 - 375	190-115	19-11/ A440
96-100	195-202	296. 200	375- 400	46- au	58-68
The second second					

FIGURE 5: PHOTOGRAPH OF WELL 1 CHIP TRAYS

Groundwater Availability Technical Memorandum No. 5 H:\Projects-Active\2005\MONO05-001 June Lake Water Assessment\Expl Wells\Report\Final June Lakes Test Wells Report.doc Page 12

ECO:LOGIC Engineering

10381 Double R Boulevard Reno, Nevada 89521 775-827-2311 775-827-2316 Fax

Depth (Feet)

Project: June Lake Rodeo Grounds Specific Plan Location: MW 1/4 SE 1/4 Sec. 15, T.2S., R.26eE Well: Rodeo Grounds Well 2 Borehole Depth: 387 feet Diameter: 10 3/4" 0-30 ft, 8 1/4" 30 to 387 ft Drilling Contractor: Western Strata Exploration, Inc. Logged by: P. Sinclair & B. Petzalt Completion Date: 7/10/06

Well Construction

Lithology

FIGURE 6: RODEO GROUNDS WELL 2 CONSTRUCTION DIAGRAM

$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
05 100 - 105 100 - 205 10 105 - 110 205 - 215 10 115 20 - 215 10 115 210 - 215 10 115 210 - 215 10 115 210 - 215 10 115 210 - 215 10 115 210 - 215 10 115 210 - 215 10 115 - 127 210 - 215 10 125 - 130 215 - 230 10 125 - 130 215 - 230 10 125 - 130 215 - 230 10 125 - 140 215 - 230 10 125 - 140 215 - 230 115 - 140 215 - 240 216 - 245 145 140 - 145 210 - 245 150 - 155 250 - 255 350 - 355 155 - 140 215 - 240 340 - 345 160 - 165 250 - 255 355 - 340 160 - 165 250 - 255 355 - 340 160 - 165 250 - 255 355 - 340 160 - 165 255 - 260 355 - 355 150									and and a second se			
10 105-1100 205-310 30-315 15 110-115 210-215 310-315 20 115-125 215-230 325-320 35 120-125 215-230 325-325 35 130-1155 219-235 355-340 35 130-1155 215-270 310-315 35 130-1155 215-270 310-315 35 155-140 315-340 30-3155 35 155-140 215-270 310-3155 35 155-140 215-270 350-355 35 155-160 255-260 350-355 35 155-160 255-260 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350 355-350						500 - So2		100-105	KER	0-5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				11 million and the					FIN	10		
25 ⁻ 120-125 120-225 325-320 3D 125-150 125-230 325-330 35 ⁻ 130-135 125-230 325-340 40 185-140 325-240 349-345 45 ⁻ 140-145 240-245 349-345 570 145-150 245-250 350-355 53 ⁻ 150-135 255-260 350-355 53 ⁻ 155-160 255-260 355-350 60 155-160 255-260 365-370				315-320		- Internet			BAR .	15		
JD 125 - 130 125 - 230 325 - 330 JJ 130 - 135 130 - 135 330 - 235 335 - 340 40 135 - 140 35 - 240 340 - 345 45 140 - 145 240 - 245 345 - 350 50 145 - 150 245 - 235 355 - 340 570 145 - 150 245 - 235 350 - 355 570 155 - 150 256 - 255 355 - 350 575 150 - 155 255 - 255 355 - 510 160 - 165 155 - 160 255 - 260 360 - 365 360 - 365 350 - 355 355 - 510 350 - 355 570 155 - 160 255 - 255 355 - 310 160 - 165 155 - 160 255 - 255 356 - 355				320-325		and a second sec	82.14		11			
15 130-135 230-235 335-340 40 135-140 235-240 316-345 45 140-145 240-245 315-340 50 145-150 245-250 350-355 55 150-155 255-260 350-355 55 155-160 255-260 355-360 60 160-165 260-265 360-365	and			325-330	Tensilly I		Sale of the second			and the second	B. C. C. C.	
40 135 - 140 235 - 240 335 - 340 45' 140 - 145' 240 - 245' 345 - 350 50 145 - 150 245 - 250 350 - 355' 55' 150 - 155 250 - 255 355 - 340 160 - 165' 255 - 220' 355 - 350 355 - 350 350 - 355' 355 - 350 355 - 350 355 - 350 350 - 355' 150 - 155 255 - 225' 355 - 350 160 - 165' 210 - 265' 326 - 376 326 - 376	A second	And there		330-33 5	No. of Concession, Name		STATISTICS.		A CONTRACTOR	-	And the second s	
45' Ho-145 240-245 340-345 50 H5-150 245-250 350-355 55' 150-155 255-255 355-350 155'-160 255-260 350-365 160-165 260-265 360-365 160-165 260-265 360-365		Anna an an		335-340	Richard R		Co. 246		Plant P			
50 145-150 245-250 345-350 55 150-135 250-255 355-360 160-165 260-265 360-368 160-165 260-265 365-370				340-345		240 -245	No.			T		ALC BE
55 ⁻ 150-135 155-160 160-165 ⁻ 255-260 ⁻ 160-165 ⁻ 260 ⁻ 255 ⁻ 260 ⁻ 25 ⁻ 260 ⁻ 260 ⁻ 25 ⁻ 260		Control of the Street	and the second second	345-350		and a second			ALL AND			
155-160 255-260 355-360 160-165 260-265 365-370 365-370		And the second s		350 - 355		250 -255			A series			
160-165 260-265 365-370	AL KAR	and an and a second	Ser.	355-360			S.S.A.S.					
3(5-370			日日日	360-365		Sec. Sec.						alander strande Barne sonter sta
			State of the state	365-370		265-270		165 - 170	State of	70		
275-075			Str.	370-375			2772		ALL TEL		Contraction of the second s	
275-280 375-380 375-380			NET ST	375-380	6	275-280	C BERT		No. of Street, or other	80		
85 160-185 240-285 380-385			Rest and	380-385		New	City in		Sec. Sec.			
90 185-190 285-270 . 385-390		Call Provide State	1	385-390		Married Street	A BY		20.BI			States of
NO-115 100 105 100 105 100 100 100 100 100			1	779-385			STA T					
10, 195-200 195-200			A COLOR	347-44	STATE OF	295-500	A THE		(A.)7	100		
			And Anna Anna Anna Anna Anna Anna Anna A	And the second	-	-	ALC: N	1949	San Strange	REFERENCE		

FIGURE 7: PHOTOGRAPH OF WELL 2 CHIP TRAYS

Groundwater Availability

Page 14

Technical Memorandum No. 5 H:\Projects-Active\2005\MONO05-001 June Lake Water Assessment\Expl Wells\Report\Final June Lakes Test Wells Report.doc

TABLE 1: WELL CONSTRUCTION SUMMARY

WELL 1

Depth Interval	Description						
(feet bgs.)							
0 to 67	10 ¾-inch diameter borehole.						
67 to 600	8 ¼-inch diameter borehole.						
+2 to 220	Blank 6 %-inch outside diameter x 0.188-inch wall thickness blank steel well casing. Below the well casing, the well was completed "open hole."						
OTHER							
0 to 67 Cement grout sanitary seal . Cement grout pumped via a tremie pipe.							
67 to 100	Cement grout annular seal. Cement grout pumped via a tremie pipe.						
100	Cement basket. An external packer surrounding the well casing to prevent cement from migrating down the well bore. Granular bentonite and a small amount of cement grout was placed above the cement basket and allowed to set overnight to ensure the placement of the annular seal.						

WELL 2

Depth Interval	Description					
(feet bgs.)						
0 to 27	10 ¾-inch diameter borehole.					
27 to 387	27 to 387 8 ¹ / ₄ -inch diameter borehole.					
+2 to 200 Blank 6 ⁵ / ₈ -inch outside diameter x 0.188-inch wall thickness blank steel well casing. Below the well casing, the well was completed "open hole."						
OTHER						
0 to 27 Cement grout sanitary seal . Cement grout pumped via a tremie pipe.						
27 to 100	Cement grout annular seal. Cement grout pumped to via a tremie pipe.					
100	Cement basket. An external packer surrounding the well casing to prevent cement from migrating down the well bore. Granular bentonite and a small amount of cement grout was placed above the cement basket and allowed to set overnight to ensure the placement of the annular seal.					

4.4 Well Development

The purpose of well development is to remove residual drilling fluids from a well after it has been constructed, reverse formation damage resulting from the well construction process, and enhance the hydraulic conductivity of the aquifer near the borehole/formation interface. Formation damage includes plugging of the formation due to invasion of drilling mud or a buildup of a "wall cake" of drilling mud on the formation/borehole interface. Because the Rodeo Grounds exploration wells were drilled in consolidated rocks by the air-rotary method, the potential for formation damage was minimal. Consequently, only a small amount of time was required for well development. The wells were simply air-lift pumped for a short period until the discharge was free of suspended material.

4.5 Plumbness and Alignment

No deviation surveys were performed of the completed exploratory wells because the plumbness and alignment criteria were very basic. The wells merely needed to be sufficiently plumb and straight to enable the test pumps to be installed to depths of approximately 220 for Well 1 and 200 feet for Well 2. In both cases, the wells were sufficiently straight and plumb for the test pumps and data loggers to be easily installed in wells to the required depths. Therefore, the criteria were met.

5.0 WELL TESTING

5.1 Equipment

The wells were test pumped using submersible pumps provided by WESTEX. The pumps were powered by a portable "whisper quiet" generator also provided by WESTEX. The pumps were installed so that the pump intakes were positioned near the bottom of the blank casing 200 feet bgs for Well 1 and 190 feet bgs for Well 2. Water levels in the wells were mon - de with In-Situ MiniTROLL™ data loggers. The pumped well logger was equipped with a 100 p.s.i.g. pressure transducer and the observation well logger was fitted with a 30 p.s.i.g. pressure transducer. After the completion of Well 1 testing, the loggers were exchanged between wells. The data loggers were accessed through a laptop computer. The data logger measurements were periodically verified with manual measurements using an electric water-level sounder. The pumping rates were regulated with a gate valve and measured with an in-line totalizing flow meter. The discharge from the pump was conveyed to a portable tank. From the tank, centrifugal pumps were used to disperse the water on the land surface via sprinklers. Periodic inspection of the sprinkler field indicated no runoff of water from the site during testing.

5.2 **Testing Summary**

Testing included step and constant-discharge tests. The recovery of water levels in the wells following test pumping was also monitored. The complete set of water-data from both wells for both tests is provided in Figure 8 and provided in Excel[®] format on a CD-ROM in Appendix B.

JUNE LAKE RODEO GROUNDS

FIGURE 8: WATER LEVEL DATA FOR WELLS 1 & 2

5.2.1 Step-drawdown Testing

Step-drawdown testing entailed pumping the well at progressively higher rates while monitoring the water levels in the pumped well. The purpose of the step test was to evaluate the performance of the well over a range of pumping rates and to assess its overall hydraulic efficiency.

Well 1

The June Lake Rodeo Grounds Well 1 step-drawdown test comprised three steps of one hour each. The results are summarized below in Table 2 and Figure 9. Four steps had been planned, but the generator experienced problems and the test was terminated at the end of the third step.

- Pre-pumping water level: 89.2 feet below the top of the 6" casing (4.0 feet above land surface).
- Pumping commenced: 07:28 hours 7/12/06.
- Discharge rate: 50, 60 and 63 gpm.
- Test duration: 3 hours.

Step	Duration, t (minutes)	Discharge, Q (gpm)	Drawdown, s (feet)	Specific Capacity, C _s (gpm/ft)
I	60	50	52.49	0.95
II	60	60	76.55	0.78
III	60	63	79.2	0.80

TABLE 2: WELL 1 STEP-DRAWDOWN TEST SUMMARY

FIGURE 9: WELL 1 STEP-DRAWDOWN TEST WATER LEVEL DATA

Well 2

The June Lake Rodeo Grounds Well 2 step-drawdown test comprised four steps of one hour each. The results are summarized below in Table 3 and Figure 10.

- Pre-pumping water level: 48.2 feet below the top of the 6" casing (2.0 feet above land surface).
- Pumping commenced: 09:00 hours 7/15/06.
- Discharge rate: 57, 107, 165 and 195 gpm.
- Test duration: 4 hours.

Comparison of Tables 2 and 3 and Figures 9 and 10 show a significant difference in the performance of Wells 1 and 2. The performance of Well 2 as measured by specific capacity is more than 20 times that of Well 1. The variation is a result of the different hydrologic properties of the dissimilar geologic materials penetrated by the two wells.

Step	Duration, t (minutes)	Discharge, Q (gpm)	Drawdown, s (feet)	Specific Capacity, C _s (gpm/ft)
I	60	57	2.03	28.08
II	60	107	4.72	22.67
III	60	165	8.31	19.98
IV	60	195	10.96	17.79

TABLE 3: WELL 2 STEP-DRAWDOWN TEST SUMMARY

FIGURE 10: WELL 2 STEP-DRAWDOWN TEST WATER LEVEL DATA

5.2.2 Constant-Discharge Testing

The purpose of a constant-discharge test is to evaluate the hydraulic characteristics of the aquifer. These properties have a major influence over the long-term performance of a well. As the name implies, the constant-discharge test entails pumping the well at a uniform rate while monitoring water levels in the well and observation wells, if present. Water levels are also typically monitored for a period after pumping ceases.

Well 1

Water levels were monitored in the pumped well (Well 1) and one observation well (Well 2). The Well 1 constant-discharge test is summarized below:

- Well 1 pre-pumping water level: 90.11 feet below the top of the 6" casing (4 feet above land surface).
- Pumping commenced: 07:00 hours 01/13/06.
- Discharge rate: 40 gpm.
- Test duration: 24 hours.
- Pumping level at the conclusion of the pumping test: 151.27 feet below the measuring point (147.27 feet bgs).
- Drawdown in the pumped well at the conclusion of the pumping test: 61.16 feet.
- No response to the testing of Well 1 was observed in Well 2

The field data plot for the drawdown data is provided in Figure 11. All of the test data are provided in Excel[©] format on a CD-ROM in Appendix B.

JUNE LAKE RODEO GROUNDS WELL 1 CONSTANT-DISCHARGE TEST 7/13-14/06

FIGURE 11: WELL 1 CONSTANT-DISCHARGE TEST DATA

Well 2

Water levels were monitored in the pumped well (Well 2) and one observation well (Well 1). The discharge from the nearby spring was also monitored. The Well 2 constant-discharge test is summarized below:

- Well 2 pre-pumping water level: 48.2 feet below the top of the 6" casing (2 feet above land surface).
- Pumping commenced: 07:00 hours 01/13/06.
- Discharge rate: 180 gpm.
- Test duration: 24 hours.
- Pumping level at the conclusion of the pumping test: 61.39 feet below the measuring point (59.39 feet bgs).
- Drawdown in the pumped well at the conclusion of the pumping test: 13.19 feet.
- No response to the testing of Well 2 was observed in Well 1.
- Spring discharge prior to the start of the test: 12 gpm.
- Spring discharge at the end of the test: 6.5 gpm.

The field data plot for the drawdown data is provided in Figure 12. All of the test data are provided in Excel[©] format on a CD-ROM in Appendix B.

JUNE LAKE RODEO GROUNDS WELL 2 CONSTANT-DISCHARGE TEST 7/16-17/06

FIGURE 12: WELL 2 CONSTANT-DISCHARGE TEST DATA

5.3 Pumping-Test Data Analysis

Analysis of the test data was accomplished in two phases. The first phase entailed a graphical analysis of the data in the field as testing progressed utilizing classical methods (Driscoll, 1989) based on the Theis equation and its derivatives. The graphical field analyses are depicted in Figures 11 and 12 for Wells 1 and 2, respectively. The Theis equation and its offshoots were derived for wells discharging groundwater from a uniform, isotropic porous medium. Experience shows it can be applied to fractured-rock aquifers that are sufficiently fractured to behave as an equivalent porous medium. The second phase entailed numerical Laplace inversion of the test data using the computer program WHIP (Well Hydraulics Interpretation Package ver. 3.22: Hydro-Geo Chem, Inc., 1988). The program applies the Stehfest algorithm of the Laplace transform inversion to a range of problems pertinent to anlysis of well test data (Moench and Ogata, 1984). The field values for transmissivity were utilized as "seed values" for the numerical analysis.

5.3.1 Step-Drawdown Testing Results

Well 1

The results of analysis of the step-drawdown data are illustrated in Figure 13. These results suggest the presence of wellbore skin and very high turbulent flow losses. The wellbore skin may relate to plugging of fractures by mineral deposits. Drill cuttings showed the presence of mineral coatings on some fracture surfaces and it is possible these deposits may be restricting the flow of groundwater into the well. High turbulent-flow well losses in fractured rocks may relate to high ground-water velocities in very small aperture-width fractures. The simulated drawdown depicted in Figure 13 suggests the well is approximately 85% efficient at 63 gpm.

Well 2

The results of analysis of the step-drawdown data from Well 2 are illustrated in Figure 14. These results suggest the presence of a negative skin factor. A negative skin is normally associated with increased permeability in the vicinity of the well bore. In this case it is possible that the negative skin relates to the enlargement of fractures due to dissolution of the carbonate rocks or additional fracturing of the rocks due to the drilling process.

JUNE LAKES RODEO GROUNDS WELL 1 STEP TEST 7/12/06

FIGURE 14: WELL 2 STEP-DRAWDOWN TEST ANALYSIS RESULTS

5.3.2 Constant-Discharge Testing Results

Well 1

The field analysis of Well 1 drawdown data illustrated in Figure 11 resulted in a value for transmissivity of 88.8 feet²/day from early-time data. The value was utilized as an initial estimate of transmissivity for the subsequent numerical analysis. Results of the numerical analysis are:

Transmissivity: 121 feet²/day (905 gallons per day per foot width of aquifer under a unit hydraulic gradient.
Coefficient of storage: 0.021 (dimensionless)
Well radius, r_w = 0.34 feet
Well effective radius, r_e = 0.26 feet
Wellbore skin = 0.2
Well loss coefficient, C = 0.49e-5
Well loss coefficient, n = 3.5

Note that the observation well (Well 2) did not respond to pumping of Well 1. Consequently, storage coefficient could not be solved directly and was estimated using a method of successive approximations.

Observed and simulated drawdown for Well 1 are compared in Figure 15. A correlation coefficient of 0.99 suggests the simulated drawdown matches the observed drawdown reasonably well so there is a high level of confidence in the results.

Well 2

A plot of drawdown versus logarithm of time for an idealized aquifer generates a straight line. The field data plot for the Well 2 test (Figure 12) produces a line that can be broken down into three segments, which suggests the nature of the aquifer differs from the idealized aquifer described by the Theis equation. The shape of the drawdown plot suggests a characteristic of many fractured rock aquifers referred to as "double porosity." Because it is not as common as the response observed in porous media, a discussion of double porosity is warranted. The discussion below is an excerpt from Walton [1991].

"Flow behavior in fractured rock aquifers differs from that in uniformly porous aquifers such as sand and gravel deposits. Fractured rock aquifers possess, in addition to void spaces between mineral grains of rock and vesicular openings, fissures (cracks, crevices, joints, etc.) which make the pattern of porosity and hydraulic conductivity complex (Streltsova, 1988, pp. 357-364).

In the double-porosity model, flow in a fractured rock aquifer is due almost entirely to the presence of fissures, while porosity and therefore storativity is mainly associated with the porous blocks. Fissures have an immediate elastic response to a sudden change in water levels, while porous blocks have an induced subsequent elastic response. Commonly, the actual irregular network of interconnected blocks and fissures is simulated by a regular network of interconnected horizontal block and fissure units. Due to

H:\Projects-Active\2005\MONO05-001 June Lake Water Assessment\Expl Wells\Report\Final June Lakes Test Wells Report.doc

26

vertical symmetry, the fractured rock aquifer may be further simplified to [a] two layered model. The block unit has a thickness equal to the average thickness of the individual blocks in the actual fractured rock aquifer and the fissure has a thickness equal to the average thickness of the fissures in the actual fractured rock aquifer. Both the block and fissure average thicknesses and hydraulic characteristics are assumed to be constant in space.

Three time-drawdown segments in fractured rock aquifers have been identified. The first segment, representing the response of fractures to pumping, exists only at very early times and is often masked by wellbore storage impacts. The effective storativity during the first segment is the storativity of the fissure. The second segment represents the period during which the cone of depression slows in its rate of expansion (a quasi-steady state) as water stored in blocks reaches fractures. Block contribution is delayed because of low hydraulic conductivity. The third segment, approached asymptotically, represents the combined response of fractures and blocks to pumping as the cone of depression continues to expand. The effective storativity during the third segment is the fissure storativity plus the block storativity."

The field analysis provided in Figure 12 yielded a value for transmissivity of 1,985 feet²/day from late-time data found in the third line segment. Subsequent numerical analysis of the Well 2 drawdown and recovery data yielded:

Fracture hydraulic conductivity x aquifer thickness, K_f x b = 1,980 feet²/day Fracture specific storage x aquifer thickness, S_f x b = 0.035 Fracture skin = 5 Matrix-fracture storativity ratio = 99 Matrix-fracture transfer coefficient = 0.044 Well radius, $r_w = 0.34$ ft Effective radius, $r_e = 0.26$ ft Well loss exponent, n = 2

Note that no response to the pumping of Well 1 was observed in the data for Well 2. Consequently, storage coefficient could not be solved directly. Consequently, storage coefficient was estimated by a method of successive approximations.

Observed and simulated drawdown for Well 2 are compared in Figure 16. A correlation coefficient of 0.97 suggests the simulated drawdown matches the observed drawdown very well providing a high level of confidence in the aquifer properties.

JUNE LAKE RODEO GROUNDS WELL 2 CONSTANT-DISCHARGE TEST 7/16-17/06

FIGURE 16: WELL 2 CONSTANT-DISCHARGE TEST ANALYSIS RESULTS

5.3.3 Discussion of Constant-Discharge Testing Results

In the vicinity of the Rodeo Grounds project, groundwater is present in fractures within metamorphic rocks. The occurrence and movement of groundwater in fractured-rock aquifers are inherently more complex than alluvial aquifers. The pumping tests conducted in the two exploration wells yielded results that allowed the observed changes in water level during testing to be simulated with a good level of confidence so that the calculated values for transmissivity are within the realm of possibilities. The test results indicate that the carbonate rocks penetrated by Well 2 are more transmissive than the quartzite penetrated by Well 1. Dissolution of the carbonate rocks along fractures in the marble may be responsible for the higher values for transmissivity compared to the quartzite.

The values for coefficient of storage should be viewed as estimates because storage coefficient can only be rigorously calculated from observation well data. No response was observed in the observation wells during either test, so storativity was estimated from the pumped well data using a method of successive approximations. The values of storage coefficient, however, are consistent with the lack of observation well response. In other words, the wells are close enough that a relatively large storage coefficient is one way to explain why pumping one well did not influence water levels in the other well. Alternatively, there may be some type of barrier boundary between the marble and the quartzite.

Alternatively, the lack of an observation well response for either test coupled with a response observed in a nearby spring during the Well 2 test may be indicative of horizontal anisotropy in the rocks in this area. That is, transmissivity is not uniform and is higher in one direction than it is in the other. For the Rodeo Grounds area, the major transmissivity tensor would be expected to be oriented roughly parallel the the axis of the folds because deformation, in this case folding, often causes fractures parallel to the axis of the fold (Compton, 1962). The axes of the anticline and syncline trend in a northwesterly direction, so that the transmissivity in a northwesterly-southeasterly direction may be greater than the transmissibily in an east-west direction. Consequently, the cone of depression that develops as a consequence of pumping a well would be expected to be elongated in a northwesterly-southeasterly direction. Conversely, the minor transmissivity tensor would be expected to be oriented in a roughly east-west direction, so that drawdown would be small to the east and west. This may explain why the spring south of Well 2 responded to pumping Well 2 and not pumping of Well 1.

6.0 WATER QUALITY

Water samples were collected from each exploration well's discharge near the conclusion of their respective pumping tests and submitted for analysis to Sierra Environmental Monitoring (SEM), of Reno, Nevada, a State of California certified laboratory. The samples were analyzed for physical characteristics and chemical constituents regulated under Title 22 of the California Code of Regulations (CCR) to determine the quality of the groundwater and to quantify the concentration of specific components of the groundwater. Additional analyses were performed for unregulated constituents in order to fully characterize the waters. The results of the chemical analysis are summarized in Table 4. The complete laboratory report is provided in Appendix C.

Analyte	Concentration (mg/l unless noted otherwise)		MCL (mg/l unless noted otherwise)
Source	Well 1	Well 2	
Date	07/14/06	07/17/06	
Time	05:30	05:30	
Temperature (°F)	49	52	
pH, lab (Std. Units)	7.57	8.05	6.5-8.5 ⁽²⁾
Total Dissolved Solids	130	160	500/1,000 ⁽²⁾
Electrical Conductivity (µmhos/cm)	130	160	900/1,600 ⁽²⁾
Color (color units)	<5	<5	15 ⁽²⁾
Turbidity (ntu)	0.2	0.7	5 ⁽²⁾
Odor (ton)	0	0	3.0 ⁽²⁾⁾
Major Cations			
Calcium	19	30	
Magnesium	2.8	2.4	125/150 ⁽²⁾
Sodium	6.2	6.8	
Potassium	2.5	1.9	
Major Anions			
Alkalinity (mg/L as CaCO ₃)	63	91	
Sulfate	10	8.7	250/500 ⁽²⁾
Chloride	1.5	1.6	250/500 ⁽²⁾
Fluoride	0.3	0.4	2.0 (1)
Cyanide	<0.003	<0.005	0.2 ⁽¹⁾
Nitrate	<0.5	<0.5	10 as (N) ⁽¹⁾
Nitrite	<0.5	<0.5	1 as (N) ⁽¹⁾
Metals			
Aluminum	<0.05	<0.05	1 ⁽¹⁾ 0.2 ⁽²⁾
Antimony	<0.001	<0.002	0.006 ⁽¹⁾
Arsenic	0.024	0.014	0.010 ⁽¹⁾
Barium	0.001	0.002	1 ⁽¹⁾
Beryllium	<0.001	<0.001	0.004 ⁽¹⁾
Cadmium	<0.001	<0.001	0.005 ⁽¹⁾
Chromium	<0.001	<0.001	0.05 ⁽¹⁾

TABLE 4: EXPLORATION WELL WATER CHEMISTRY DATA SUMMARY

H:\Projects-Active\2005\MONO05-001 June Lake Water Assessment\Expl Wells\Report\Final June Lakes Test Wells Report.doc

Analyte	Concentration (mg/l unless noted otherwise)		MCL (mg/l unless noted otherwise)
Copper	0.003	<0.002	1 ⁽²⁾
Iron	<0.05	<0.05	0.3(2)
Lead	0.001	<0.001	0.015 ⁽³⁾
Manganese	<0.01	<0.01	0.05 ⁽²⁾
Mercury	<0.0002	<0.0002	0.002 ⁽¹⁾
Nickel	<0.006	<0.001	0.1 ⁽¹⁾
Selenium	<0.005	< 0.005	0.05 ⁽¹⁾
Silver	<0.001	<0.001	0.1 ⁽²⁾
Thallium	<0.0005	<0.0005	0.002 ⁽¹⁾
Zinc	0.05	0.04	5 ⁽²⁾
Radionuclides			
Gross α activity (pCi/l)	0.874 ± 0.885	1.08 ± 1.06	15 pCi/l
Radium ²²⁶ (pCi/l)	0.409 ± 0.491	0.748 ± 0.475	20 pCi/l
Uranium (mg/l)	<0.001	0.004	0.03
Gross β activity (pCi/l)	1.87 ± 1.90	1.94 ± 1.62	50 pCi/l
Other			
Silica	51	52	
Langlier Index	-0.79	0.4	
Surfactants (MBAS)	<0.05	<0.05	$0.5^{(2)}$
Asbestos (fibers longer than 10 µm/liter)	<0.02	<0.02	7 million (fibers longer than 10 µm/liter) ⁽¹⁾
	Organic C	Compounds	
(see	lab report for complet	te listing and detection li	mits
EPA 548.1 Endothal	<5		
EPA 547 Glyphosphate	<6		
EPA 525 Semivolatiles	n.d	n.d	
(see lab report for listing)			
EPA 531.2 Aldicarbs	n.d.	n.d.	
(see lab report for listing)			
EPA 549.2 Diquat & Paraquat	n.d.	n.d.	
EPA 504.1 DBCP & EDB	n.d	n.d	
EPA 515.4 Herbicides	n.d.	n.d.	
(see lab report for listing)			
EPA 505 Pesticides	n.d.	n.d.	
(see lab report for listing)			
EPA 524.2 Regulated VOCs plus Lists 1 & 3	n.d.	n.d.	
(see lab report for listing)			

Table 4 Notes: nd signifies not detected.

- (1) Primary Drinking Water Standard
- (2) Secondary Drinking Water Standard (recommended/maximum concentration).
- (3) Action level
- (4) All results in mg/l unless otherwise indicated.

Groundwater assessed at these two locations is of calcium bicarbonate type, with relatively low total dissolved solids. No organic contaminants were detected and overall groundwater quality is good with one notable exception; the concentration of arsenic in the groundwater exceeds the maximum contaminant level of 0.010 milligrams per liter in both Well 1 and Well 2. The concentration of arsenic for groundwater derived from Well 1 was 0.024 mg/l and the concentration of arsenic for groundwater derived from Well 2 was 0.014 mg/l.

Arsenic removal is required if the water is to be used as a source of water supply. A discussion of water treatment options is beyond the scope of this report. However, the water appears to be treatable, but the elevated concentration of silica will likely complicate some treatment processes (Mike Wilkin, 2006).
7.0 WATER SUPPLY AVAILABILITY

7.1 Long-Term Production Well Yield

The probable performance of production wells at the each of the exploratory well sites was evaluated by calculating drawdown using the computer program WHIP (the same program used to analyze the test data). The simulated response to pumping each hypothetical production well is discussed below.

Well 2

The calculations assumed pumping rates of 33, 100, 200 and 300 gpm

The principal assumptions for the calculations include:

The well is constructed with 10 ³/₄-inch outside diameter casing within an 18-inch diameter borehole.

The well is 100 per cent efficient.

No recharge to the aquifer occurs during the pumping period.

The aquifer is represented by a 2,500 feet wide strip of fractured rocks. This is based on the mapped width of map unit PPc, in which the observed carbonaceous marble appears to be located. The aquifer has the following properties:

Fracture hydraulic conductivity x aquifer thickness, $K_f x$ b is 1,980 feet²/day.

Fracture specific storage x aquifer thickness, $S_f x b$ is 0.035.

Fracture skin is 5.

Matrix-fracture storativity ratio is 99.

Matrix-fracture transfer coefficient is 0.044.

The results of the simulation are illustrated in Figure 17. At the end of one year of pumping at a constant rate of 33 gpm, a production well constructed near Test Well 2 may be expected to experience approximately 3.5 feet of drawdown, which is minor compared the thickness of the aquifer penetrated by Well 2. Assuming a static water level of approximately 46 feet below the land surface, the pumping level would be expected to approach 49.5 feet below the land surface.

After continuously pumping for a period of one year at a rate of 100 gpm (52.56 million gallons per year or 160 acre-feet per year), a production well at this site is expected to experience approximately 10.5 feet of drawdown. This translates to a pumping level of approximately of 56.5 feet below the land surface. The simulation also suggests that a production well at this site might be capable of pumping at higher rates, as much as 300 gpm, for shorter periods of time. For example, after 90 days of continuous pumping at 300 gpm, the drawdown would be expected to approach 28 feet, a pumping level of 74 feet below the land surface. The advantage of pumping at a higher rate is faster filling of water storage tanks following periods of high demand.

In all likelihood, the well will not be 100% efficient, so the pumping levels are expected to be lower than the simulated levels. However, because Well 2 was terminated at a depth of 387 feet, a deeper production well may be even more productive. Furthermore, because some recharge to the aquifer is certain to occur, the long-term yield of a well may be better than

FIGURE 17: PREDICTED PERFORMANCE OF A PRODUCTION WELL AT THE LOCATION OF JUNE LAKE RODEO GROUNDS WELL 2

the simulation suggests. However, the exact performance of a production well must await the construction of the well and extended-duration testing to demonstrate the reliable yield of the production well to the satisfaction of the State of California Department of Health Services and Mono County.

Well 1

The quartzite aquifer materials near Well 1 are not as transmissive as the carbonaceous marble aquifer materials near Well 2. Consequently, a production well at this site is expected to yield less water than a production well at the Well 2 site.

The computer program WHIP (the same program used to analyze the test data) was used to calculate the long-term performance of a production well constructed near Test Well 1.

The principal assumptions for the calculations include:

The well is constructed with 6 % -inch outside diameter casing within an 8 $1/\!\!\!/_4$ -inch diameter borehole.

No recharge to the aquifer occurs during the pumping period

The aquifer has the following properties:

Transmissivity is 121 feet²/day

Coefficient of storage: 0.013 (dimensionless)

Wellbore skin is 0.2 Well loss coefficient, C is 0.49e-5 Well loss coefficient, n is 3.5

The results of the simulation, illustrated in Figure 18, indicate that at the end of one year of pumping at a constant rate of 33 gpm a production well constructed near Test Well 1 may be expected to experience approximately 75 feet of drawdown. Assuming a static water level of approximately 84 feet below the land surface, the pumping level would be expected to approach 159 feet below the land surface. Consequently, a production well at this locale might be used to provide the water supply during periods of low water demand. Because the yield of a production well will be relatively small, there is little reason to construct a large diameter well.

FIGURE 18: PREDICTED PERFORMANCE OF A PRODUCTION WELL AT THE LOCATION OF JUNE LAKE RODEO GROUNDS WELL 1

7.2 Potential Impacts

The elevation of the land surface at the Well 2 site is approximately 7,612 feet above mean sea level. The water level in the well was measured at approximately 46 feet below the land surface, so that the elevation of the piezometric level in Well 2 is approximately 7,566 feet above sea level. The depth to water in Well 1 is approximately 85 feet below the land surface and the elevation of the land surface is approximately 7,641 feet. This yields an

elevation of the piezometric level in Well 1 of approximately 7,556 feet. By comparison, the elevation of Gull Lake is approximately 7,602 feet above sea level. Because the elevation of groundwater at the site is lower than the elevation of Gull Lake, there is no potential for groundwater extractions from wells at the test well sites to intercept groundwater flow moving toward Gull Lake. Furthermore, it is not possible to determine the precise groundwater gradient beneath the project because there are only two wells on the precise.

Higher lake water elevations may however indicate a potential for groundwater extraction to induce flow from Gull Lake. However elevations alone only indicate a *potential*, based on limited data, not that actual transmission of groundwater along a particularly vector exist. In order to evaluate the potential for hydraulic communication between Gull Lake and groundwater/spring resources in the immediate area, physical and isotopic chemistry data were evaluated.

Pumping Well 2 at 180 gpm reduced the flow of the spring on the property from 12 gpm to 6.5 gpm after 24 hours of pumping (see Figure 19). The reduction in flow is probably due to a reduction in the piezometric head in the aquifer in the vicinity of the spring. All else being equal, spring flow reduction will be proportional to the decrease in head, so that the greater the drawdown near the spring, the greater the head reduction. Because drawdown in the aquifer due to pumping a well increases with the logarithm of time, and spring discharge will decrease in proportion to the drawdown in the vicinity of the spring, a plot of spring discharge versus logarithm of time (Figure 19) can be used to estimate reductions in spring flow due to pumping a well near the site of exploration Well 2. Extrapolating the observed trend into the future suggests it would take several years of continuous pumping at 180 gpm to cause the spring to cease flowing, if no recharge were to occur during that period. At lower pumping rates, the potential effect would be less.

FIGURE 19: SPRING FLOW REDUCTIONS ASSOCIATED WITH JUNE LAKE RODEO GROUNDS WELL 2 TESTING

7.3 Fingerprinting Groundwater and Surface Water

The elevation of groundwater measured in Well 1 and Well 2 is lower than the water levels of Gull Lake, indicating a potential for groundwater at these sites to be derived from, or in hydraulic communication with, Gull Lake. However, as stated above, water elevation alone, only indicates a potential for groundwater movement and does not provide any information on whether actual transmission along an interpolated vector is occurring. In order to evaluate whether Gull Lake is indeed a source of groundwater at Well 1 and Well 2 and if subsequent pumping will have a potential influence on lake levels, both physical (major cations and anions) and isotope chemistry were evaluated (Table 5). Groundwater samples from the Ski Area well, the on-site spring, as well as, surface water from Reversed Creek were also collected and assessed as part of this analysis. The sample locations are illustrated in Figure 20 for reference.

TABLE 5: SUMMARY OF SELECT GENERAL CHEMISTRY, MAJOR CATIONS/ANIONS,AND STABLE ISOTOPES OF WATER

Sample Location	Well 1	Well 2	Ski Area Well	Spring	Reversed Creek/Gull Lake	Reversed Creek (downstream)
рН	7.57	8.05	7.59	8.01	7.72	7.70
TDS (mg/L)	130	160	120	150	120	110
Са	19	30	23	30	22	21
(mg/L)	19		23	30		21
Mg	2.8	2.4	2.1	2.0	1.5	1.5
(mg/L)	2.0	2.4	2.1	2.0	1.5	1.5
Na	6.2	6.8	4.7	6.4	8.5	7.3
(mg/L)	0.2	0.0	Ψ.1	0.4	0.0	1.5
к	2.5	1.9	1.9	2.0	2.9	2.5
(mg/L)	2.5	1.5	1.5	2.0	2.5	2.5
Total Alkalinity as CaCO ₃	63	91	64	89	74	71
(mg/L)						
SO4	10	8.7	8.0	8.0	6.2	6.47
(mg/L)	10	0.7	0.0	0.0	0.2	0.47
CI	1.5	1.6	1.2	1.2	2.6	2.2
(mg/L)	1.5	1.0	1.2	1.2	2.0	2.2
δ ¹⁸ Ο	-16.63	-17.05	-16.76	-16.94	-12.19	-13.92
(‰, VSMOW)	-10.05	-17.05	-10.70	-10.34	-12.13	-10.82
δ²H	-124.5	-126.8	-126.6	-126.6	-104.5	-111.4
(‰, VSMOW)	_					

FIGURE 20: IDENTIFICATION OF GROUNDWATER AND SURFACE WATER SAMPLES COLLECTED FOR GEOFORENSIC ANALYSIS

7.3.1 Major Cations and Anions

A Piper Diagram, which graphically displays the percent relative composition of major cations (Ca, Mg, Na, K) and anions (Cl, SO₄, HCO₃, CO₃) in solution, was prepared to initially evaluate the water chemistry at the site (Figure 21). In constructing such a diagram, the miliequivalents of major cations and anions are first plotted on the lower left and right hand trilinear diagrams, respectively. A line is then projected from each of these trilinear plots from the corresponding sample and parallel to the Mg and SO₄ axes. The intersection of these two lines defines the sample location on the diamond shaped field. The chemical composition of the water sample is a reflection of water-rock interactions and/or anthropogenic contamination and indicates the hydrochemical facies (dominant ions, water type). In this case, it is clear that the dominant ions in both surface and groundwater are calcium and bicarbonate (Ca-HCO₃ type water), typical of geochemically "young" water. Furthermore, there appears to be some indication of groundwater mixing with Gull Lake water within Reversed Creek, suggesting groundwater discharge to the stream (gaining stream). This is not surprising considering the presence of the nearby spring and the fact that the potentiometric surfaces at Well 1 and Well 2 are higher than the elevation of the creek. The preliminary assessment of major cations and anions alone however does not provide conclusive evidence as to whether Gull Lake is a source of water at the Rodeo Grounds. In order to better understand the source of Rodeo Grounds groundwater, the stable isotopes of water were also investigated.

FIGURE 21: PIPER DIAGRAM ILLUSTRATING MAJOR WATER CHEMISTRY

7.3.2 Stable Isotope of Water

The stable isotopic ratios of the water molecule ($^{18}O/^{16}O$ and $^{2}H/^{1}H$) were assessed at the University of California at Davis, Geology Stable Isotope Lab and compared to the reference standard Vienna Surface Mean Ocean Water (VSMOW) and reported in the conventional delta (δ) notation with the units permil (∞) via the following relationship:

 $\delta R = (R_{sample} R_{VSMOW} - 1) \times 1000$

were R_{sample} and R_{VSMOW} are the isotopic ratios of ¹⁸O/¹⁶O and ²H/¹H of the sample and the standard, respectively. δR values are typically used when discussing isotope ratios as measuring absolute isotope ratios or abundances is not easily accomplished and can result in significant problems when comparing data sets from different laboratories, instruments, or sample runs on the same instrument (instrument drift). These issues are overcome by simply measuring a known reference standard at the same time as the sample, thereby allowing precise comparison between samples, analytical instruments, and laboratories. The results of the isotope analysis of groundwater and surface water samples collected within and nearby the Rodeo Grounds project area are graphically illustrated in Figure 22 and summarized in Table 5.

FIGURE 22: PLOT OF THE STABLE ISOTOPES OF GROUNDWATER AND SURFACE WATER, THE GLOBAL METEORIC WATER LINE, AND MODELED EVAPORATION TREND

As can be seen from Figure 22, all of the groundwater/spring samples plot near/on the Global Meteoric Water Line (GMWL), reflecting the average isotopic composition of infiltrated precipitation (recharge). Furthermore, surface water collected from the Gull Lake outlet to Reversed Creek is isotopically distinct from groundwater/spring samples, attributed to evaporation, which fractionates isotopes, preferentially retaining the heavier isotope in liquid water relative to the vapor phase, a fractionation process typical of open bodies of water, such as lakes. It should be noted that the spring sample is most similar to, both with regards to its isotopic composition as well as major cations and anions, Well 2 water.

7.3.3 Evaporative Origin of Gull Lake and Source of Rodeo Grounds Groundwater

As previously stated, evaporation is a fractionating process, in contrast to plant transpiration, which is a net non-fractionating process, and therefore does not modify the isotopic composition of the residual water in the soil/aguifer. So where evaporation will modify both the solute concentration and the isotopic signature, transpiration will only influence the concentration of solutes. Additionally, evaporative fractionation can be an equilibrium process at humidity values approaching 100% and dependent on temperature. Assuming either a closed (vapor and water are in contact for the entire phase change) or open (vapor is continuously removed) system, evaporative fractionation may be estimated. As all of the groundwater samples plot very close to one another, and on the GMWL, it can be assumed that the average of these samples reasonably reflects the average initial isotopic composition of precipitation, and groundwater recharged by precipitation, entering Gull Lake. Additionally, by knowing the average annual temperature, in this case recorded for the nearby community of Lee Vining (Weather Underground, 2007), a model of estimated open system evaporative fractionation can be constructed. As humidity within the project area is far less than 100% (Weather Underground, 2007), kinetic fractionation also needs to be considered. While equilibrium fractionation near 100% humidity approaches a slope similar to the GMWL, progressively lower humidity values result in a reduction of the evaporative trend line slope (Figure 22). Successive values for humidity can then be modeled until the evaporative trend aligns the source water samples (groundwater) and evaporated (Gull Lake) samples. In this case, an average estimated humidity value of around 38%, for an open system, results in a slope of the evaporative trend line that intersects the isotopic composition of Gull Lake. It is interesting to note that this modeled humidity value corresponds to the measured average humidity at Lee Vining of 49% (Weather Underground, 2007). The difference from the modeled humidity and the average annual humidity may be explained through spatial differences in humidity at Lee Vining, compared to Gull Lake, as well as significant seasonal differences in humidity and evaporation potential from that of the annual averages.

It should be noted, however, that chloride mass balance of groundwater and Gull Lake indicates more evaporation likely occurs within the lake than that predicted based simply on the open system model (Rayleigh equation) assumption. For instance, under a closed model scenario, isotopic fractionation is much less than in an open system and therefore more evaporation needs to take place in order to arrive at a given isotopic composition, in this case, Gull Lake. In reality, most systems are not truly open or closed and in fact are "partially" open/closed, which is likely true in this case as well. Additionally, transpiration will concentrate solutes such as chloride along the shallow (root zone) groundwater/soil flow paths, increasing chloride concentrations as they enter the lake, without modifying the isotopic composition. Regardless of the particular model (open, closed, partially open/closed), the isotopic composition of Gull Lake can be obtained through simple evaporation of water similar in isotopic composition to that measured locally in groundwater.

Together, the significant differences in the isotopic composition of Gull Lake (water isotopically heavier in Gull Lake due to evaporation than groundwater) and groundwater provides substantive evidence that Gull Lake is not a current source of water to the wells/springs assessed as part of this analysis, including the Rodeo Grounds, Ski Area, and unnamed spring. If Gull Lake were a significant source of groundwater for the Rodeo Grounds, groundwater assessed at Well 1 and Well 2 would reflect the isotopic composition of this lake source, which it does not. As one would expect, the evaporative model also suggest that, although Gull Lake is not a source of recharge water to the Rodeo Grounds project area, its isotopic composition can be derived through simple evaporation of local meteoric water and exfiltration of groundwater, recharged by precipitation, to the lake.

It is important to note that the source of groundwater recharge to the lake cannot however be derived from the Rodeo Grounds project area as the potentiometric surface at Well 1 and Well 2 is between approximately 36 to 46 feet lower than Gull Lake (water will not flow uphill). Accordingly, analysis of these data support the conclusion stated in Section 5.3.3 that the dominant mode of groundwater transmission is along preferential fractures controlled by geologic structure, that is the fractures are likely aligned parallel to the fold axis of anticlines and synclines located within/near the project area and along a northwesterly – southeasterly trend. This is further supported by the fact that neither Well 1 nor Well 2 had an observed response during pumping of the other respective well, regardless of the relatively close proximity of the two test wells. Additionally, the spring discharge was only affected by pumping of Well 2, not well 1, further supporting the preferential transmission of groundwater along a northwesterly-southeasterly trend. These data provide evidence that recharge of Rodeo Grounds groundwater is likely derived from the hills towards the northwest and not Gull Lake.

7.3.4 Gull Lake and Groundwater Mixing – Reversed Creek

The stable isotopes of water can also be used to conservatively evaluate mixing between two isotopically distinct sources. In Figure 22, this was accomplished by assuming a simple two component mixing model with end members indicative of Gull Lake and the average isotopic composition of groundwater dominated by meteoric recharge. This mixing analysis indicates that, at the time of sampling, the Reversed Creek sample, collected downstream of Gull Lake and upstream of the Ski Area, was composed of a computed 68% Gull Lake water and 32% groundwater discharge to the stream. This corresponds very well to the mixing analysis using chloride as a conservative ion tracer, which indicates approximately 67% Gull Lake and 33% groundwater discharge at this location. These data indicate that Reversed Creek is a gaining stream in the vicinity of the Rodeo Grounds project area, at least during the period of sampling (January), which is again supported by the observation that the creek elevation is lower than the groundwater elevations in Well 1 and Well 2 as well as the presence of a surface spring.

SOURCES OF INFORMATION

Compton, R.R., 1962. Manual of Field Geology: John Wiley and Sons.

Driscoll, F.D, 1989. Groundwater and Wells: 3rd edition, Johnson Filtration Systems.

- ECO:LOGIC, 2006. Technical Memorandum 2 Rodeo Grounds Water Demands: technical memorandum prepared for Mono County Community Development Department.
- Hydro Geo-Chem, 1988. Well Hydraulics Interpretation Package, version 3.22: computer program for the analysis of pumping test data.
- Kistler, Ronald W., 1966. Geologic Map of the Mono Craters Quadrangle, Mono and Tuolumne Counties, California. Unites States Geological Survey Geologic Quadrangle Map GQ-462.
- Moench, A.F. and A. Ogata, 1984. Analysis of constant discharge wells by numerical inversion of Laplace transform solutions. Groundwater Hydraulics, Water Resources Monog. Ser. Vol 9. pp. 146-170.
- Weather Underground. Last accessed May 2007. Lee Vining Weather Station History 2000-2007. Available at: http://www.wunderground.com

Wilkin, Mike, 2006. Personal communication.

APPENDIX A

WELL CONSTRUCTION SUMMARY & FIELD LITHOLOGIC LOG

		[[CONSTRUCTION SUMMART F	
			LOCATION OR COORDS.	ELEVATION: GROUND LEVEL <u>곳도&</u> 유는
			NWH SEH Sec 15, T.28. B.26E	TOP OF CASING
	Ĵ		DRILLING SUMMARY:	CONSTRUCTION TIME LOG:
-()	June Lake,		TOTAL DEPTH <u>387 ft</u> BOREHOLE DIAMETER <u>834" OD</u> to 390' below TOC (temp)	<u>START</u> <u>END</u> <u>TASK</u> <u>DATE TIME</u> <u>DATE TIME</u> DRILLING:
	1 of June 2 Petertt		DRILLER Western Strata Exploration Clarksburg, CA	$\frac{10^{11}}{32''} \frac{7/1}{7/5} \frac{7/1}{13:15} \frac{7/1}{7/8} \frac{10:90}{10:90}$
	i. sauth wes		RIG_ <u>TH-60</u> BIT(S)_10 ³⁴ " centrix, 8"4" hammer	GEOPHYS. LOGGING: CASING:
	¥Γ.		DRILLING FLUID <u>air</u>	
			SURFACE CASING temp 10' steel to 30'	FILTER PLACEMENT:
	LOCATION	TD=387'	BASIS: GEOLOGIC LOG BASIS: GEOPHYSICAL LOG casing string(s) c=casing s=screen	DEVELOPMENT
í)				WELL DEVELOPMENT: An Art 1 clean
			CASING: $C1_{65'8'} OD \times D.185 A53B$ C2	
	spi		C3	
	Lake Rodeo Grounds		C4 S1 S2 S3 S4	COMMENTS: - Open hole below 200 ft - grout ran to 100' on 7/8 to hold casing in place - 7/10 grout inspection
	June Li		FILTER MATERIAL <u>none</u>	
			CEMENT <u>neat cement grout</u>	
()	PROJECT.		to 1001 (4 sacks) OTHER shale trap @ 100 ft	
	∟		below Toc	

Lithologic Log - Poring Number: エレダイン

Page <u>I</u> or

í

									linology graphic		1											+(Щł		槲		槲	
		Section	itude:	Start Date/Time: $\frac{7}{\rho} \left(\frac{\sigma \delta}{\rho} \frac{1}{\rho} \right) = \frac{1}{\rho} \frac{\sigma \delta}{\rho} \frac{1}{\rho} \frac{\sigma \delta}{\rho} = \frac{1}{\rho} \frac{\sigma \delta}{\rho} \frac{1}{\rho} \frac{1}{\rho} \frac{\sigma \delta}{\rho} \frac{1}{\rho} \frac{1}{\rho} \frac{\sigma \delta}{\rho} \frac{1}{\rho} 1$	Borehole Diameter: /ゥ ジy" ゥ - 3 ∓,	•	200 Fト Elevation (TOC):		Description and Remarks (rock types, formation name, fractures, etc.)	- 50% clos, 50% sand, 10% obsidian		-22 why clary		100% = 100		10070 0100						some conter injected to cool bit		gravely sized chips						
	ion:	Legal Description:	inates:	Date/Time	ole Diam	Water Level (Date):	Casing Depth:		Color	grey / black		5.6		1			94194 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	3 res/	もなられ	=		3		Ande		grey black		*		
	Location:	Legal	Soc	Start	Boreh	Water	Casin		enutrioM		.			4 4 4 4	-	*		1	-	= n%		5		213		**		2	رم ا	
									Chips vs. grains									25%	501. P.	2.2%	ŭ U			75 Stuid		2.5 % Chipte	·	25%	51-73	
			۵	2													uku kan								-					
		비	しょ	yes no				iption	Plasiicity								-				A CATACACACACACA							- V L KE V - VORGEREN		
	5	223	オイシエ		1 41 61		other:	Unconsolidated Sediment Description	ssaupunoy	542		n													***					
	Sree-	5+24+4	5	Geophysical Log:	8 24 " heren	17 485	.	dated Sedi	ezis) Gravel/cobbles %			****					A Marriad An An an a Adaram				A * A * A * A * A * A * A * A * A *				· VAVAVAVAVAVA 6400			4 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5		
	3	1	1-2+ 2-1			:e: 38	Final Construction: See Contruction Summary: X	Unconsoli	(əzis) % bns2	۲		ř					10 5 8 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		•		00 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							**********		
/	Σ÷Υ	Westary	41)	Patect	centre X	Surfac	truction		% 11IS	01		22					-					\								
1	-rke	N.cs		4 4	Cent	i from	e Cont		Clay %	٨		ب ۲		001		101	awAvAban Av In	ĥ	,	75		Ϋ́.		2		Ъ,		33		25
ſ	Ĵ		Zig Ty	la .r	34	rehole	n: Sec		Ainift Q (GPM)	۵							LANAMANAN				*									nments
	3	읽	ş	100	- 1	B	<u>i</u>	Circulation	ross Keinms		_											-								Ŝ
Į.	ject: June	Drilling Contractor:	Drilling Method / Rig Type:	Logged By: Suck	Bit Size/Type: / ₽ ⅔4 "	Total Depth of Borehole from Surface:	Constru			Σait				az:11			a way of a way of a way of a		05:11	05:21	A N A N AN AND AND AN AN AN			-						Additional Comments:
	Project:		Drillin	Logge	Bit Si:	Total	Final		(sgd) riiqeQ		9		ę			<u>0</u>			ļ	9		2	ų	8	ç	7	45	<u>}</u>	05	

ECO:LOGIC Engineering

Logged By:_

Date

	oidqarg ygolorbi.J	曲曲			出:1	,i (j-l			ı t t		1 1 1 1		╅╬╫		цЩ,	┝┿ ╪ ┙	H_{1}^{+}				
	Description and Remarks (rock types, formation name, fractures, etc.)	Sauch marble or calcareous sauristant		de pre			-r1]+		E Surgard (2 North Surgard (2 North Surgard)									chips 222.91		<u>41</u> . fr	
	Color	black	11				4					. Manual between the state of t				A design of the life of the second					
	enuteioM		Ъхи		ţ,				5		-	an yan na va v a na ya v a n	÷.		ž		:		ب ر		
	snisng .ev sqind	5%	`																		
	Cementation	<u>v</u> v		-								*************				a dava y a yaya ya ku a y					
	Plasticity											4.00 YEARA AL ARAYA				are contain a too					
Unconsolidated Sediment Description	ssaupunog					\neg						****									
adiment												*****					ļ				
lidated Se	gravel/cobbles % gravel/cobbles %																	-			
Unconso	(əziz) % busS		v vit		-							*****				NAVAN A NAVA NA NAVA					
	% #!S																				
	% ¥elO	7	4											-		anas Avaldas as					
	(Mgð) (gpm) Aihifi (gpm)															ana A vanada A v					Additional Comments:
Circulation	SSO					\downarrow															Com
	smujay					-+					<u>-</u> .	VANA			<u> </u>	v teralitika	<u> </u>				tional
	Penetration time									Ę.	<u> </u>	AAAAAAA	<u> </u>	<u> </u>	<u> </u>	500 W 5. 60	<u> </u>		ļ	1	Addi
	(sốq) ượcơ		55	60		65		 ۲	2	ł	0	ć	20	2	8	ě	26	, i	ß		5

.

Lithologic Log - woring Number:

Page 2 u

Logged By:__

Date

ECO:LOGIC Engineering

Lithologic Log - Boring Number:

Page <u>S</u>of

	Lithology graphic			╓		啦		┆ ┥┥┥┥	┿╏┝╃ ┥╢┝┥	┉		+ <mark> </mark> ┱		ΨĤ		Ψ 1 +			HH.			
	Description and Remarks (rock types, formation name, fractures, etc.)	carboards warks		J.			w) excerts				UT cele. te veras			31					sowe te stain			
	Color	4 lack	3/2	1	-	~		2		÷			na mana v n Manana v na v Jol, dilko, velane Vo	-		ť	n en var var var var var var var var de var	11		3	A MARINA WAY AND A CAMPANYA NA CAMPANYA NA CAMPANYA	
	Moisture																an un an a shaka A					
	Chips vs. grains	ali Ohig													-							
	notisinameO	40											AVAILA IN LA CARANA NOTE CO.				10 10 1 05 2 106 2 10 1 1 1 1 1 1 1 1 1 1					
ption	Plasticity			• •									An factor to backet AL 2014				o al aver watches ve as a 1					51700.81
lent Descri	ssanbruoF												9697 A V 87 May 100 A V 90				and analysis have a second					
Unconsolidated Sediment Description	gravel/cobbles % (size)												ward Avdurant Andre 7 van		:						**************************************	Etals +
Unconsoli	(eziz) % bneS												t att threat tradition								V N V V V N V V V N V V V N V V V V V V	1 4
	% WS											<u> </u>	taukun khuak		-							End End
	% YeiO												AMERICA AN				44.4.241.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1	 				
	Airlift Q (GPM)				<u> </u>									<u>.</u>		 		_				Additional Comments:
Circulation	ទទទ ស្រុកស្រុក ទំណារទទួ			<u> </u>	-					<u> </u>		E										inal Co
	Penetration time				- And				And the second				AN IN THE A A A MUSIC A A				4 (VAL 2000000) (1940				18:00	Additio
	(sնզ) կլժәՕ		L C		-			115-	Į		ł		00,	2	1	- 22 		140		145-	4	3
																					المداحا ب	4/./00

Date: 7/5-106

ECO:LO. gineering

.

l

Page L of

Lithologic Log - Boring Number:

·斯斯斯·斯斯·斯斯 Dingsy graphic the Concertion calcarosus 2+2 Sand or sandy unarber 4 Description and Remarks (rock types, formation name, fractures, etc.) ि ५५ \diamond° more irregular, bies in this part. pole yellow soft mineral coeting + Some 7/4 Water in the well a cernit the a.m. mineral arthro et is 1 وسلمل closts still getting longer chips show this wedding 404 1913 Cr albudeever unarbla 2 405 Shirt 400 114 cale Ste sund stone 146/15 Standing 10 13-24 Pale gerlow No Sample Ś とのく 50140 thole Ξ ÷ ÷ b)xck/ 912 536 ະ 2 <u>N 25</u> z 3 Color Ξ 5 : eiu)sioM Water 90% 95% 35% OL P 6-10 168 -7 chips vs. grains H 2 × ~ Cementation 07:20 Plasticity nent Description 0 sseupuno; 07/06/00 Sedir (esis) % selddoolleverg **Jnconsolidated** (ezis) % pue2 Start % #!S % YelO Additional Comments: 14.00 (M9O) O flihiA sso Circulation smulaž 170 07:50 9.4 07:20 94:80 emit noitertene9 165 175 190 195 200 155 90 180 185 Depth (bgs)

ECO:LO. Igineering

Date:

		Гіңлојоду дгарніс	╷ <mark>┝┽</mark> ┝╋╞┾╸┝╋ ╷ _{┝┽} ┝╋╞┿┙╢			┥╎╎╷┝┽╽ ┥╴╽┙╷╵┝┽╽┑╸╽ ┙		╺╏╢┝╠╧┨┥┠╡ ╺╎╎┝╎┝┥┥┥┥	┝┽╢╆╗╌┝┿ ╆ _{┝┥} ╿╫ _{┿┿} ┝┾			
Page <u>1</u> of		ormation name, fractures, etc.)	• •		sele yalow minestal coating an							
Lithologic Log - Boring Number:		Description and Remarks (rock types, formation name, fractures, etc.)	Carbonaceurs warb ⁱ ~		11		X	11	10	mueral coatury on	Sours green mureral cost-	
ic Log - E		Calor	black	5	1.	2		h	II	4) ₁	
tholog		enutsioM					A		-			
		Chips vs. grains	Marthy Lings	=	بر		••	•				
		Cementation										
	ption	Plasticity										
	ient Descri	sseupunoy						•				
:	Unconsolidated Sediment Description	(ezis) % selddoo/levsng										
	Unconsolic	(əzis) % bns2										
		% #!S										
		% Yai)										
		(M90) Aidift Q (GPM)										<i>از کرک</i>
	Circulation	rozz Ke(nuz										al Co
:		emit noitettenenenenenenenenenenenen er							4th:0/			Addition
		(sɓq) yiqaQi				2				540	245	250 /

ECO:LO Jgineering

Logged E. 11 Pe +23/+

Date: 07/06/06

Number:
Boring
Lithologic Log -

Page <u>6</u> of

	-	┍┟╢		+		+ <u> </u> + +		+		14		141	<u></u>	ŀ₽₽		<u>≁</u>]†[+		-#		⁺╢╋		
	Description and Remarks (rock types, formation name, fractures, etc.)	E E Carbana charbana charban	+	<u></u>			<u>11, 14</u>		[-16] } -	- 311	rt 1		sour outers rous	3		1. THE SECOND STATE STAT			(1)	۲ ۱	chips show tracture plane surfaces	
	Color	black/ 9rcg		Ξ		. =		Ξ		×		JJ		٦			6					
	Moisture																					
	snisig. sv sqird)	Marty		۲		7		¥		ž		33		มี		3		11		8		
	Cementation																					
UQ	Plasticity				*																	
ant Descript	ssandnuck																					
Unconsolidated Sediment Description	(ezis) % səlddoxlevsig																-					
Inconsolida	(ezis) % bne2				-																	
	% IIIS				*																	1
	% ys).																•					
	(M9Đ) (M9D)																					Additional Comments:
Circulation	5507													L		<u> </u>			-			S S
	Retums		\	┝			-	 	~			<u> </u>						<u> </u>	5	<u> </u>		ional
	Penetration time		11.35	Ĺ_					13:10					ļ					14:45	ļ		
	Depth (bgs)		766	Ř		260		297 7			97E	1		280	200	C27		067		Ë,	500	8

ECO:LO. gineering

2

Date:

Lithologic Log - Boring Number:

	Lithology graphic	┧╋┨╺╄╄┙ ┦┧ _{┩┨} ┥┑┥	╪╏╞╈┽ ╪╢╹┝┯┥ ╪			┍┲┫╷┝╇ ┝┿┨┿ ┝┿┨┿	+					+)+\+				╊ ╻ ┠╓╹			[+]]		i T
	bescription and Remarks (rock types, formation name, fractures, etc.)	E Sarbace marsie		Zarre stanning	50 State				27 - 27 - 27 - 27 - 27 - 27 - 27 - 27 -	<u>11</u>						woll chapter on the bit, tracture zone		some transmiss of fracture face	Х.		
	Color	lack plack	Ŀ		ړ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		~		1		11		y		ž		1		
	Moisture																				
	Snips vs. grains	Musting Ch. B	¥		2		ž		*		2		ч		Y		*		رر		
	Cementation																				
5	ក្សទៅទ										·										
Unconsolidated Sediment Description	ssaupunog					-															
ated Sedim	(ezis) % səlddoo'ləvsig																				
Unconsolid	(ezis) % pueS																				
	% HIS																				
	% ¥elO											_									
	(M9Đ) Airlifi Q (GPM)		1											_							ments:
Circulation	sso		-						<u> </u>			-					<u> </u>				Com
	Penetration time		+	AE:51										1. 1.							Additional Comments:
			305		200		<u></u>	<u> </u>	320		 Ş,			_			 8		345	Cue	
	(sбq) црбеД		3	¢	n				() ()	(м 1995					¢	·

ECO:LO. gineering

Date:

40/40/20

LOGGED B. II Paltzalt

Page Z of

	οίταρης αταρίτις			- b et) -that - 144	+ + + ⁺ +	+ [] 4		++ + + + +			}44 ++ - _++- +-		┝┽╏┝┦ ┠┿┟┶╏┧	++++++++++++++++++++++++++++++++++++++							
	Description and Remarks (rock types, formation name, fractures, etc.)	Carbonaceous merble	N.	c	passiale th				Large volume water discharged from well					No semplos			Ful a 387 lt the at a callenas	taining air-1.4+ descharge			
	Color	12 lack	1																		
	enutsioM																				
	Chips vs. grains	110	3440	11		~		۲,		η		AL		¥		ų					
	Cementation						•														
3	Plasticity																				
	(esis) % selddoollevsig	1																			
	(esis) % selddoolleverg																				
	(esis) % bris2									·											
	% #!S																				
	Clay %																				
	(M99) D Thiria															Je-	1h7				
liculation	-oss (etims																				
	emi noitsvene9																				
	Depth (bgs)		200	<u> </u>	3ED	8	365	3	370	5					L C	5	000		10E	2	007

ECO:LO igineering

٦

Logged E. Brill Petzaht

Date: 7/6-8/04

CONSTRUCTION SUMMARY F	
LOCATION OR COORDS.	_ ELEVATION: GROUND LEVEL <u>7641</u>
NW/4 SW/4 Sec 15. T. 25, R. 26E,	TOP OF CASING
DRILLING SUMMARY: TOTAL DEPTH <u>600 FT</u> BOREHOLE DIAMETER <u>10/4" 0 - 67'</u> 8/4" 67-	CONSTRUCTION TIME LOG:
TOTAL DEPTH 600 FT	START END
BOREHOLE DIAMETER 10/4" 0-67	TASK DATE TIME DATE TIME
BA" 67-	DRILLING: 10" 6/27/86 10:00 6)27 15:55
DRILLER Western Strata Exploration	6 ⁴ <u>6/27</u> 16:40 <u>6/29</u> 17:00
RIG_TH-60	GEOPHYS.
BIT(S) 10/4" Contrix, 8/4" hammer	
BII(S) <u>MA CONTA, ON RAMMET</u>	<u>6.578" 0.D 6/30/06 6/50/06</u>
DRILLING FLUID	
NOTION AND AND AND AND AND AND AND AND AND AN	FILTER PLACEMENT:
WELL DESIGN: WELL DESIGN: BASIS: GEOLOGIC LOG BASIS: GEOPHYSICAL LOG	
BASIS: GEOLOGIC LOG	- DEVELOPMENT
CASING STRING(S) C=CASING S=SCREEN	
	WELL DEVELOPMENT:
	Air-lift pump with 1 clean
CASING: C1 6-76"00 x 0,158" A53 B	
C3	
Ŭ C4	
S S1	COMMENTS:
S2 S3	Open hole below 220 ft bls SW2L 85 ft bils.
	Shill 83 ft bills.
S4 CENTRALIZERS_/	
FILTER MATERIAL Hone	
CEMENT	

.

2				T		T		· · · ·	ophic	Lithology gr	, ¥ & , 93,	1:0	200	<u>у</u> , ч	9.3	3	i, i,		9.8°0	3-0	GV.	6	19.0	Q4 8	ŧ.	1,1	10	Ĩ,	1061		
Lithologic Log - Boring Number: ディアムチュ		Section	tude:	6/27 as 10:00 Finish Date/Time:	22 P. 1 24 P. 2 VA C 7- 10 UNIING TUDE: 1. 1. 1. 2 C	81 44 8 (cd as	ZZO C Elevation (TOC):		Description and Remarks (rock types, formation name, fractures, etc.)		Squal Sment		samp grand		grantine same toole grave	Gravelly same		e of water 2, 18'	at - June 115 derk workenics	Sandy survey survey but a some deare silk		41 1	Sundy SIT MIX of LIKUPLES & granitue		2391 - Slow Because of soft F		- setting granchic chips bedrack?	se 46', rue (undes black voles	allocate and the set and the set of the set		2 P
ogic Log - Ē	tion:	Legal Description:	dinates: No	Start Date/Time:	Borenole Ulameter: Mater Lavol (Dato):		Casing Depth:			Color	t to	,			+1		m.q.11								- Fer		dr k		a non-man for the state of the		
Litholo	Location:			Start .	Moter Moter	vvater	Casin			Moisture					• •						trace		- . .								
			74-60		5				l enii	Chips vs. gra		-			:							2	903	2	\$	19	40	al) cr, g	205		
		404		3	100					noùstnemeO										_						<u> </u>		-			
	5	tore !		2) 2	- 1			ption		Plasticity					:						-						:				•
	Evenance	ст Ца		og: yes	Par Ner		other:	tent Descri		sseupunoy	angut		of Stree	3I SI							60			1. Ma	r - re e Ardi - Ar we want e r	245	6mg			-	
		trata	-0	·	P.K			Unconsolidated Sediment Description	% se	gravet/cobbie (size)	60	1.Hu	R	•	155		4SH			,	<u>ଛ</u> ୁ		4 L *	1 30	San and	22	5 141 100	æ	Land Black		ŀ
	Rodeo	5	Drilling Method / Rig Type: Concern trux	Geop	256		Final Construction: See Contruction Summary: X	Unconsolic	((asis) % bna2		1.0	1,		40		کک				2		2	.0. M					P.e.e		
	ke	stern	24 Cen		Total Denth of Borehole from Surface		uction			% #!S				; ;	12		4					Ĩ	60	*			1	<u>+</u>	2		
	101	11/2	ä	<u>िम</u> ट	from .		Cont			% Yel)			5		ž									2	1			7			
	2		Tyr	1 2400	ahola		See.		(W	99) a înînia								х́ т			÷						:		i 	Additional Comments:	
	JNN-	<u>c</u> io		2] ;			ŝ	Circulation		ross		; ;							:	_		\square		 		[ļ		ъ С	
		ontra	etho	- 	ie de la compañía de	5	str Str			Returns	ত্ব	-	\$	र् त			-7	1L		+	<u> </u>	⊢∤					<u> </u>	310	172	itional	
	<u>ن</u> ي ا	Drilling Contractor:	M Bu	Logged By: Bit Size(Time	Total Donth of		5		əmü	noilenene9	10:02	:	14.10	27.07	107	• •	5 4	5:01	-		<u>s</u>				SHIN	<u> </u>	<u> </u>		1-8:177		•
	Project:			Logi			Ella			(sộd) rigag		ı	ი		2	15	2	00	3 .	25		8	5	8	, i i i i i i i i i i i i i i i i i i i	0		45	20		

Y

Ż

ĺ

.

ECO:LOGIC Engineering

00

00

Date

9

Logged By:

į

			<u> </u>		1122 B 1870	1723	Sector Sector	TURNEY				The second	
	5	μιταροίο γροιοτή		2002	16 SU	222	1809	<u> </u>	NO37		and the second		
			3	tis questate					3		1		
		Description and Remarks (rock types, formation name, fractures, etc.)	builder to 51' Mix of black & drown volcanics & granituer Maturicat grey silty same	5///or that there governant MK worthle, have about 20 1//or fight siles that alter a second parsal to granite	similar, but all brown		1) more grade	Same, w/ ~ 2-5% gra	Saur F - chips 1" minus - sour tract	Same - Smell chips, Kinner	Same - 1492 2000 Ch. 62	Sate A	hennen 670 1;
		Color		brut Brut	-200 F	brown	14 14 14 14	Sail 11	greent	71			8 fau 1
		enutsioM				1 C B C WY Y DB C YO		6 A A 40 mile . 4	:	- V Ray & Annual Ave V			2
	÷.	Chips vs. grains	2/0	A. J.	r,	5	Ţ	J ₁		3			
		notistnemeO								, and i e character the Volter			4
	tion	Plasticity							-	a dan si in ya inay mago			2
	ient Descrip	sseupunoy								· W = · · PAN · · · · · · · · · · · · · · · · · · ·		an - Theorem and Annual Ann	
	Unconsolidated Sediment Description	gravel/cobbles % (size)	bould w								÷		
	Unconsolic	(əzis) % bns2	~							an nanina an an			
		% 1‼S	4				3						
		% KelO	4				t t	بالا		5		4	
	1	(M92) Q nina	0									<u> </u>	Additional Comments:
U	Circulation	ross ភូទព្រះបន											al Con
╟	l	Penetration time		H 55		100			F A	話	100	2 57 El	ddition
1		(sốq) yidə(j			<u>;</u> ©	8						36	

•

(

(

í,

:

LOGGED BY. D. D. W. G. C. Mag. C. Mara

127/08

061

Date:

ECO:LOGIC Engineering

	լլյսօլօծλ ձւցեր։շ	55							199	<u> III</u>		2 <u>6</u>
			- 1997 A. P. C. A.				kt c Race				- So - M.S. Annual - Annual Management of a constant of	
	Description and Remarks (rock types, formation name, fractures, etc.)	w) tracture planar	mog a at not volume , ennound	ertzize			5 (1/2") green starn of fractur	soustier en po Stare	a a a a a a a a a a a a a a a a a a a		color to H Grown	
		Z" Minus	ch, 83 0.2"	san fo		Saue	larger chills	Similar - S	21	*	Similar a	、
	, Solor	breed Breed	brown	green	<u>۲</u>	1 <i>1</i>	- W		wostly brock			
	koisture		-				a har an an tankar ann		4. 199 a. 1. 2. 198 a. 1. 11			
	snisny sv sqin	حارا	×	~~~~		7	76		Len CYPEREN			
	noilstræme						No NA VIANANA ANALAS					(25.
	aslicity G	Ч					-	:			rayî de Yanayê i ti	æ124,
	Local (size) (size) (column column co	»в	a va									8
	ea by by by by by by by by by by by by by	s) 6							2000-00 - 10 - 10 - 10 - 10 - 10 - 10 -			4
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	s		_	a de la constante de						-	7610
	% 11							· ·		· ·		28:30 Additional Comments: Stoppas
	% ÅB	o	-		n umut v			· ·		:		5
	(MGO) (GPM)	10-					+			<u> </u>	\sim	ments
	Circulation	-										
	smut		<u></u>				1	5 .	3		দ্বাৰ	11 itiona
	emi) noiletiene ^c	+	50400	110 0412	<u> </u>	<u></u>	22 A 201	130 07:45	135 27 35	04	5760 62	150 D&: 30 Addition
1	(sốq) yidə(1 -	105 6/27 6/27	÷	115	120	125	2	22		ž	¥

ECO:LOGIC Engineering

20

Date: 06/27/

Logged By. D. Bug

(

ţ

ĺ

		Lithology graphic		<u> </u>	<u> </u>		<u> EEEE</u>						
Page 4 Of													
Lithologic Log - Foring Number:		Description and Remarks (rock types, formation name, fractures, etc.)	dougins vod 20 151	♥	Chips '2" Munes rough very Levà	erhatted e 1455	alert- hard Surell alpo	2 <i>2 2 2 2 2 2 2 2 2 2</i>	1 ()	Similan 2189: Some Sleek than a) Fe strin	impsily as above some bleck.	541 for 1/2" minus	
jic Log -1		Color	Horty Horty	Last to the t	for we	Serve	~ ~	צ		Werthy do eland	H.grey Lgreen Drace	14 9 004 \$ 9 reen	
itholog		Moisture							-				
7		Chips vs. grains	all 1 Chup	11	4	11	5	۲.,	*	ħ	π		
		notistnemeC											
	5	Alonseid											
	Unconsolidated Sediment Description	ssaupunoy											
	ated Sedi	(ezis) % səlqqooylexe)			·								
	Unconsolid	(əzis) % bnsS			-						-	-	
		% 11!S	:									· · ·	
.÷		Ciay %	-									· ·	
		(M90) û tîhia	ţ,		2~						~~~ <u>`</u>		mments
	Citcutation	sso sunjaz				· · · · · · · · · · · · · · · · · · ·							Additional Comments:
)		emit notistrene ^q		155 8	160	6460 14100			67:A	550			
		(sộd) riqaQ		22	190	69	0	e) [180	8 9	190	195	

2

ECO:LOGIC Engineering

70/22

0

Date

A

Logged By:_

ł

(

		сійрогоду дгартіс										
		Description and Remarks (rock types, formation name, fractures, etc.)		Seve 2 238'	Elips K"minus Jome Fe staining on fucture	few etujus ~1" the stain and	Jame Low with start			same te star a trachur gera	Same and " and the	Same
5		Color	Greent	greent legrest trease	במות ב	Aret Jace	5 F	£4	5		h	
		enutaioM										
		Chips vs. grains	all Chr.ps	x	٤	~	5	łł	ير			
		notetnemeO	t i									2
	tion	Plasticity										
	ent Descric	ssaupunoy						-		-	7	
	Unconsolidated Sediment Description	gravel/cobbles % (size)							-			
	Unconsolid	(əzis) % bns2					:					
		% #IS							<u></u>			
		Ciay %		:			-				-	
		(M90) Aihir (GPM)	<u>-</u> 2	'3	~~~	· · · · · · · · · · · · · · · · · · ·				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Juments
	noiteluosiO	ross Retums				· · ·			-		t	
		еті пойвлепе	1522		ŝ	1104			'	07:11 07:11	25%	11:57 1.203 1.206 1.206 Additional Comments:
		(s6q) yidə(j		205	210	215	220		230	657	240	250

ţ

(

ECO:LOGIC Engineering

Date:

Logged By: $\mathcal{D}, \mathcal{B}_{\mu}$

		Lithology graphic		11				1. 1. 1. 1.	3									1.1.1	<u></u>			1.2	
		Description and Remarks (rock types, formation name, fractures, etc.)	Same chips ~ 0,2'' minus		Saure		Same		Source		Zane		J.C. and	fractures 2275' - larger atures	orartert - chips moth 0.2" munes		Same	CARS TA PART			Freedores. For stars of havente?		
871 <u>7</u> 6		Color	Harey	Frace brown	×		n		ኑ		ž		ر ر		J.								
		Moisture											· ·										
)		Chips vs. grains	4LI Chings		7		u,		λ,		ب				×		×						
		noŭstnerneO																				-	
	ption	Plasticity														:		;					
	Sediment Description	ssanbnucs														-							
	ated Sedin	(size) % səlddox/ləvb								-													
	Unconsolidated	(əsis) % bns2																					
		% YeiO			-														Γ				
		(M9Đ) Q tihia	2~	~			\sim	~:	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~	\sim		5	\searrow	~~~	-	- m	4		<u> </u>	~ 02	iments:
	Circutation	\$\$0] \$1000																		•			al Com
-		Penetralion time		12:10		(2)16		12:24	12:30	12:42						12.2B	1 3:04			•		13:25	Additional Comments:
		Depth (bgs)		755	201	260-		265	}	020	212	97C	0/7	Coc	707	100	201		067	1	CRZ	300	8

í

ECO:LOGIC Engineering

でも Date:

D. Z.

Logged By:

2

z of			, Lihology graphic		17.72				1.1.1											130		
Lithologic Log - Bóring Number:			Description and Remarks (rock types, formation name, fractures, etc.)	+	0 30	うちょう			Chips 2" minues Es cratine en Quertere carlon		a 2331 - Erectures	2	gtaits as above		er aport	L @ 335'	we precharge there been heard	Dreiteren chamered Area white the cation	tools torques up 34.5° Very rough	pender & Ar 34 72	bougies 2481	
Log - Bori			Color	Homes Ct	J-J-0-5	++0-12 ++		×	4 64	-		2	₹•		11 212	Force	i Sai	-	green hout	ned	જ્ય	
ologic			. ទាបរិខរិសា	2.4															57-4			
Lith			snishg .av aqirl.	all	÷	Ж		¥			-				Y		=	-		1		
			notistnameO	1.00						<u>1 * </u> 										+-		
		ю	Plasticity																			hucker
	-	Sediment Description	sseupunoz							-								-	-			4 126
		ated Sedim	gravel/cobbles % (size)							:												
		Unconsolidated	(esis) % bns2									· · · · ·						-	 			rsvex
			% HIS							-		: : :		•					-			Q measu
			% YelO	:																		*
			(M90) O finia		~					-70		×					-	~				ments:
	uoijieluo	up	\$\$07		_		-		· · · · ·									;				l e
			Penetration time Returns		1335	<u>04:51</u>	05:50			12:21			<u> </u>			14:52		rt : 38	42.00	1 2 2	14:30	Additional Comments:
			(sộd) riquad		305		1 010		315		330			000					24 0 4 	345 L		000

(

ĺ

ECO:LOGIC Engineering

4

0

キノノノ

Date

(~

Logged By:

Contraction of the Citryotogy graphic Page & of 290 オ Description and Remarks (rock types, formation name, fractures, etc.) t restruct a 16.40 Du re ę ł enelland 2 th - 5 3 color r singles <u>ملا ددلمرجر</u> 1.44 252 12" minues 201-28 3 ţ كمنالعه Ş Ś Stop C. 14:50 イイシュロ Sfill rowa ι 50,40 ۱ surve that しんしょ Same 50 22 2000 200 85 Rough. chi 65 トママ ņ +.'4 49.000 North Street سير 2 بر Color ţ ~~ ∠ --enutsioM . 2 57 57 ž Chips vs. grains سي، ప F : Ξ <u>ب</u> noitetnemeO Applacticity Unconsolidated Sediment Description รรอบpนทอง (ezis) % selddoo/leverg (asie) % bne8 % #!S % YBIO ٤ (M90) (GPM) sso Circulation ទយាវាទរូ 395 16.21 360 15:31 400 16:4 15:07 15:42 16:12 emit nottenteneq 355 375 380 385 330 370 365 Debth (bgs)

Lithologic Log - Boring Number:

Ś)

 $\left(\right)$

ECO:LOGIC Engineering

¢ Ó

2

Date

i ug chiz

Logged By:

Additional Comments:

		οίης ογορλία		<u>)</u>		<u> </u>		55						<u>.</u>	<u> </u>			J.S.		N.
Page <u>1</u> oi											······································							: :		
																ne Greek				
		es, formation name												L0,2'' V. ''		mes zoege			•	
		Description (rock types, formation name)					SF							Marthy Co		ins start			:	
			אירו אנגרץ	2+2+く	Jer, mernene		r, 62 0.					Stuts	•	523	9+2+2	larger				F. H.S.
Lithologic Log - Boring Number:			Chips 22"	start 9+	chigs 26"		grzite	4		14		Same old	reugh C 428	chect 972; black c	5	918. J.	Sa - is	-	341-12	1 172 - 3'S
ic Log - B		Color	والعلاب		tous il	- I	green	-		Green	truce	£		H gray	tree 2 bleek	green				Lelow T
thọlog		Moisture														-				
		Chips vs. grains	all		~		*	-	-			ĸ		<i></i>			٢		÷	87.5-1
		Cementation							•											Ą
	sition	Plasticity																		4a/62/
	ent Compo	รรอบpunoည										,		-		-				د <i>وا</i>
	Unconsolidated Sediment Composition	gravel/cobbles % diam, shape					-													52 his
	Unconsolid	Sand % (vf to cs)	;						-											06:58
		% I#S																		1 SW2
		% vel							:										•	
ľ	I	Ainift Q (GPM)	ę		54/	_		-		~	<u>`</u>	\sim	\leq	~	- K		<i>γ</i> р	\sim	~~~	ments:
	-Circulation	Loss · · · · · · · · · · · · · · · · · ·								$\left - \right $:			;		.*	_		· ·	
)	I	Penetration time		16:50		40.21					A.E.		253E1		135 B 2	-	18:00	1815	181	OSC. Addit
Î		Depth (bgs)	l	105		10,4	2	415	-	420-			130	}	30,	}	440	-	128	450

:

) 0

ŕ

ECO:LOGIC Engineering

+ t hut 90/52,

D

.

オオイ +h~ Date 06/28/06

Logged By: D. Zuge

Lithology graphic Far + Mrs stain Frechurc ł 50 5-2 1045 みないな いちちゃ Description (rock types, formation name) Surface S. larger che of Jur feeds *** 1) clear , not yeller slickensike at brown aling Hun Harryco few langer (1") chips Discharge & cope to yellow trun al tracture fret Fe starmers susot. そうろう 34° Minus , 484-485 14" winus H72 & U74 ((()) ł 2 424-594 242.4 or could less quetring Ye.: 02:30 drived nuitoruly 3/8" mines drilline. 521721 chips le minu) Fe (limmite?) rough Brown chips Manov Fe Stan マンクト 9 「おしてしょう」 ч _1 [1 ومهدماء a hater @ 479 No Fe stain 4 :43 ų 二十 こ こしちかい 25812 ch. 25 しのちちちゃっち 51344515 Descharge Shut down Ser faces 24 1276 wittor P055, 512 challer 50147 Cherry P Farer Los to the (+ 9 ' 4) urostly green JYECH 3 rear book N BOO Color y ¥ 5 Moisture 911 6403 Chips vs. grains ۶ 2 č æ ÷ notistinameO Plasticity Inconsolidated Sediment Composition ssaupunoy gravel/cobbles % gravel/cobbles % Sand % (vf to cs) % WS % YelO Additional Comments: 5 100 (M9D) Q fiihiA ß **SSO** uoneinon ຣະນາກູອ 495 10 by 465 2B.50 480 2525 490 00% 455 0810 460 0839 475 051b 29.38 2/21/ 005 470 0910 485 0231 906 906 Penetration time (sốq) yidəg

Lithologic Log - boring Number:

)

1

Page 10 ----

1

ECO:LOGIC Engineering

h

20

Date: 06 29.

11 6410

Logged By: P. R.

Lithologic Log - Sring Number:

()

Page 11 - ----

í

	frinuojóðA ðusbuic	257	1	S.S.S.			SI				555
	Cescription (Ock types, formation (Ock types, formation))))))))))))))))))))))))))))))))))))	chigh 38' some re stand	Chips 36" unus Latips of gravitic sizus, or was the after to grang of 1/1 Range to 200	4.5cl	Elerge Alt mana chine the start on some chine	ch ps 13 muns crutter 523-525 ty 5 rown - coloved cruent, matter 611	chors 25" minuts - w/ Fe Stain	Same but smallar strigt	singue to above, but more staining 12:25 store to Alghtun and survey huse	Small ar chipman stain	
	Cator	lt. gray green brown	2000 S	-	- 17	brown, black grey	τ	Litter Com	ъ 1	X	
	Moisture										
	Chips vs. grains	411 24 25									
	Cementation	. 4' 14									
	Plasticity										
position											
lent Con	ssaupunoy										
Unconsolidated Sediment Composition	gravel/cobbies % dian, sagee										
Jnconsolic	Sand % (vf to cs)									2	
	% 11/S					:					
	% YeiO				:				:	-	•
	(M99) Q fihia	25/		~~~~	~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		·		111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Circulation	Loss Retums			<u> </u>		<u> </u>					
I			10:30 (5:21	<u>ي</u>	228		1332 1348: 1378:	/2rk	<u>a</u>	2	10 m
	Penetration time		1 7 .				<u> </u>			1271	
	(sgð) AlqaG		60c	0 1	6 C C	520	<u>,</u>	530	0.00	540 1 1	550

ECO:LOGIC Engineering

¢

04

<u>Na</u> V

Logged By. Dal

Lithologic Log - boring Number:

. . [

()

ź

	λ διεύμις	6olodii l :	<i>1</i> 2	12		Ŵ									<u>برز:</u> ا							
Page 11 m																Anna 1997	843	America and a court of the second of the	wes truck			
Lithologic Log - poring Number:	Description (rock types, formation name)		accord quarter to to		Crips 12 minus	-blew hose again	201	occassionally, demuner bars/ hamps up.	chips k" muus, stanet		4 7.4	XXXX and + + + + + + + + + + + + + + + + + + +	sitement - H drown, Ariable, interbulking w/	5 chart	tin a state		relates white there or find available intrusive one carlo # + granitie (contain ations)	Marth Block 587-5400	2		Inor	
jic Log -`b		Color	nors /1	blackd	•		n		hours	: : :						-	· · ·	greed	black w	freed f		
tholog		enneioM								-								•		-	1 	:
	svieig.	ev eqidO	Sti C		μ		. H		\$	- - -	₽~		Ŧ		¥		ĥ					
	noit	shnemeO						•		:												
	sition	Plasticity			*****									Nerver 11 11 11 11 11 11 11 11								-
	ss Compo	eupunoy																				
		gravelfoc diam, sha												:								•
	(vi to cs)	% pusS									-									•		
		% 11/S								:				:						:		
		% yeiO												:		:				:		
ľ	(өрм)	Q îlihiA	$\tilde{\kappa}$	$\left.\right>$	<u></u>	~~	\geq	~~~~		<i>ــــ</i>			~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~	~	~	~~		:
Ĺ	Circulation	Returns Returns																				
)	emit noit			1525		544			3			لي لك عر		: * : : :		16 33				•		Coti
	(ទសិ	Depth (I		r r r	2	200		100		ĺ	0/0		0	000		0 4	8	, c	222		D D D D D D D D D D D D D D D D D D D	600.

ECO:LOGIC Engineering

106

125

Date: 24

LODGED BY. Pale CS.

;

APPENDIX B

PUMPING TEST DATA AND ANALYSIS RESULTS (CD-ROM in Excel $^{\odot}$ format)

APPENDIX C

LABORATORY REPORT OF WATER ANALYSES (CD-ROM in PDF format)

JUNE LAKES RODEO GROUNDS WELL 2 STEP TEST 7/15/06

TIME SINCE PUMPING STARTED, t (MINUTES)

Eco Logic Consulting Engineers Attn: Dale Bugenig 10381 Double R Blvd. Reno, NV 89521
 Date:
 8/17/2006

 Client:
 ECO-500

 Taken by:
 Client

 PO #:
 Client

Dear Dale Bugenig,

It is the policy of Sierra Environmental Monitoring, Inc to strictly adhere to a comprehensive Quality Assurance Plan that insures the data presented in this report are both accurate and precise. Sierra Environmental Monitoring, Inc. maintains accreditation in the State of Nevada (NV-15) and the State of California (ELAP 2526).

The data presented in this report were obtained from the analysis of samples received under a chain of custody. Unless otherwise noted below, samples were received in good condition, properly preserved and within the hold time for the requested analyses. Any anomalies associated with the analysis of the samples have been flagged with appropriate explanation in the Analysis Report section of this Laboratory Report.

General Comments:

- There are no general comments for this report.

Individual Sample Comments:

- There are no specific comments that are associated with these samples.

Approved Bv:

Sierra Environmental Monitoring, Inc.

This report is applicable only to the sample received by the laboratory. The liability of the laboratory is limited to the amount paid for this report. This report is for the exclusive use of the client to whom it is addressed and upon the condition that the client assumes all liability for the further distribution of the report or its contents.

Page 1 of 5

1135 Financial Blvd. Reno, NV 89502-2348 Phone (775) 857-2400 FAX (775) 857-2404 sem@sem-analytical.com John C. Seher *Special Consultant Quality Assurance Manager*

Date:

8/17/2006

Eco Logic Consulting Engineers Attn: Dale Bugenig 10381 Double R Blvd. Reno, NV 89521

 Date:
 8/17/2006

 Client:
 ECO-500

 Taken by:
 Client

 PO #:
 Client

Analysis Report

Sample ID:	Custo	omer Sample D	D	Date Sam	pled Time Sa	mpled Date R	eceived
S200607-0615		JLRG-1		7/14/200	5:30.	AM 7/14	/2006
						Date	Data
Parameter	Method	Result	Units	MCL	Analyst	Analyzed	Flag
Alkalinity, Total	SM 2320 B	63	mg/L CaCO3		Pacheco	7/14/2006	
Alkalinity/Bicarbonate	SM 2320 B	63	mg/L CaCO3		Pacheco	7/14/2006	
Alkalinity/Carbonate	SM 2320 B	<2	mg/L CaCO3		Pacheco	7/14/2006	
Alkalinity/Hydroxide	SM 2320 B	<2	mg/L CaCO3		Pacheco	7/14/2006	
Aluminum - ICP-OES	EPA 200.7	< 0.05	mg/L	0.05/0.2 mg/L	Keller	7/21/2006	
Antimony - ICP-MS	EPA 200.8	< 0.001	mg/L	0.006 mg/L	Li	8/4/2006	
Arsenic - ICP-MS	EPA 200.8	0.024	mg/L	0.01 mg/L	Li	8/4/2006	
Asbestos	Subcontract	See Report	-	_		8/1/2006	
Barium - ICP-MS	EPA 200.8	0.001	mg/L	2.0 mg/L	Li	8/4/2006	
Beryllium - ICP-MS	EPA 200.8	< 0.001	mg/L	0.004 mg/L	Li	8/4/2006	
Cadmium - ICP-MS	EPA 200.8	< 0.001	mg/L	0.005 mg/L	Li	8/4/2006	
Calcium - ICP-OES	EPA 200.7	19	mg/L	Ū	Keller	7/21/2006	
Carbamates (ML531) (EPA 531.1)	Subcontract	See Report	•			8/17/2006	
Chloride - Ion Chromatography	EPA 300.0	1.5	mg/L	250/400 mg/L	Henderson	7/18/2006	
Chromium - ICP-MS	EPA 200.8	< 0.001	mg/L	0.1 mg/L	Li	8/4/2006	
Color Apparent	EPA 110.2	<5	Color Units	15	Hellmann	7/15/2006	
Conductivity	SM 2510 B	130	µmhos/cm		Pacheco	7/19/2006	
Copper - ICP-MS	EPA 200.8	0.003	mg/L	1.0 mg/L	Li	8/4/2006	
Cyanide,Total	SM 4500 CN C	< 0.005	mg/L	0.2 mg/L	Hellmann	7/27/2006	
Diquat (EPA 549.2)	Subcontract	See Report	-	_		8/17/2006	
EDB-DBC (EPA 504.1)	Subcontract	See Report				8/17/2006	
Endothall (EPA 548.1)	Subcontract	See Report				8/17/2006	
Fluoride - Ion Chromatography	EPA 300.0	0.3	mg/L	2.0/4.0 mg/L	Henderson	7/18/2006	
Glyphosate (EPA 547)	Subcontract	See Report				8/17/2006	
Gross Alpha and Beta Radiological	Subcontract	See Report				8/10/2006	
Hardness, as CACO3	SM 2340 C	59	mg/L CaCO3		Seher	7/25/2006	
Herbicides (NPS3) (EPA 515.1)	Subcontract	See Report				8/17/2006	
Iron - ICP-OES	EPA 200.7	< 0.05	mg/L	0.3/0.6 mg/L	Keller	7/21/2006	
Langelier Index	SEM - SOP	-0.79	-	-	Seher	7/27/2006	
Lead - ICP-MS	EPA 200.8	0.001	mg/L	0.015 mg/L	Li	8/4/2006	
Magnesium - ICP-OES	EPA 200.7	2.8	mg/L	150 mg/L	Keller	7/21/2006	
Manganese - ICP-MS	EPA 200.8	< 0.01	mg/L	0.05/0.10 mg/L	Li	8/4/2006	В
MBAS Surfactants	SM 5540 C	< 0.05	mg/L	0.5 mg/L	Kobza	7/15/2006	
Mercury - AA Cold Vapor	EPA 245.1	< 0.0002	mg/L	0.002 mg/L	Kleinworth	7/26/2006	

John Kobza, Ph.D. Laboratory Director Page 2 of 5

1135 Financial Blvd. Reno, NV 89502-2348 Phone (775) 857-2400 FAX (775) 857-2404 sem@sem-analytical.com John C. Seher Special Consultant Quality Assurance Manager

Eco Logic Consulting Engineers Attn: Dale Bugenig 10381 Double R Blvd. Reno, NV 89521

 Date:
 8/17/2006

 Client:
 ECO-500

 Taken by:
 Client

 PO #:
 Client

Analysis Report

Sample ID:	Custo	omer Sample ID)	Date Sam	pled Time Sa	mpled Date R	eceived
S200607-0615		ЛLRG-1		7/14/200)6 5:30 A	AM 7/14	/2006
Parameter	Method	Result	Units	MCL	Analyst	Date Analyzed	Data Flag
						•	
Nickel - ICP-MS	EPA 200.8	<0.006	mg/L	0.1 mg/L	Li	8/4/2006	В
Nitrate-N - Ion Chromatography	EPA 300.0	<0.5	mg/L N	10 mg/L as N	Henderson	7/17/2006	
Nitrite-N - Ion Chromatography	EPA 300.0	<0.5	mg/L N	1 mg/L as N	Henderson	7/17/2006	
Odor	SM 2150	0	T.O.N.	3 T.O.N.	Hellmann	7/15/2006	
Pesticides and PCBs (PESTSDW) (E	Subcontract	See Report				8/17/2006	
pH	SM 4500 H+B	7.57	pH Units	6.5 to 8.5	Pacheco	7/14/2006	
pH - Temperature	SM 4500 H+B	18.4	°C		Pacheco	7/14/2006	
Potassium - ICP-OES	EPA 200.7	2.5	mg/L		Keller	7/21/2006	
Radium 226 - Radiological	Subcontract	See Report				8/10/2006	
Radium 228 - Radiological	Subcontract	See Report				8/10/2006	
Selenium - ICP-MS	EPA 200.8	< 0.005	mg/L	0.05 mg/L	Li	8/4/2006	
Silver - ICP-MS	EPA 200.8	< 0.001	mg/L	0.1 mg/L	Li	8/4/2006	
Sodium - ICP-OES	EPA 200.7	6.2	mg/L	e	Keller	7/21/2006	
Sulfate - Ion Chromatography	EPA 300.0	10	mg/L	250/500 mg/L	Henderson	7/18/2006	
SVOCs (ML525) (EPA 525)	Subcontract	See Report	Ũ	5		8/17/2006	
Thallium - ICP-MS	EPA 200.8	< 0.0005	mg/L	0.002 mg/L	Li	8/4/2006	
Total Dissolved Solids	SM 2540 C	130	mg/L	500/1000 mg/L	Pacheco	7/17/2006	
Total Recoverable Metals - Acid Dig	EPA 200.2	Completed	5		Kleinworth	7/24/2006	
Turbidity	SM 2130 B	0.2	NTU		Hellmann	7/15/2006	
Uranium - ICP-MS	EPA 200.8	< 0.001	mg/L	0.03 mg/L	Li	8/4/2006	
VOCs (VOASDWA) (EPA 524.2)	Subcontract	See Report	&			8/17/2006	
Zinc - ICP-MS	EPA 200.8	0.05	mg/L	5 mg/L	Li	8/4/2006	в

Data Flag Legend:

B - Element or compound also found in associated Method Blank.

Page 3 of 5

1135 Financial Blvd. Reno, NV 89502-2348 Phone (775) 857-2400 FAX (775) 857-2404 sem@sem-analytical.com John C. Seher *Special Consultant Quality Assurance Manager*

Eco Logic Consulting Engineers Attn: Dale Bugenig 10381 Double R Blvd. Reno, NV 89521
 Date:
 8/17/2006

 Client:
 ECO-500

 Taken by:
 Client

 PO #:
 Client

	Qual	ity Control	Keport			
Parameter	LCS, % Recovery	MS, % Recovery	MSD, % Recovery	RPD, %	Method	Blank
Alkalinity, Total	102.0			0.00		
Alkalinity/Bicarbonate				0.00		
Alkalinity/Carbonate				0.00		
Alkalinity/Hydroxide				0.00		
Aluminum - ICP-OES	102.0	101.0	102.0	1.18		
Antimony - ICP-MS	105.0	101.0	104.0	2.93	< 0.001	mg/L
Arsenic - ICP-MS	102.0	104.0	104.0	0.00	< 0.001	mg/L
Barium - ICP-MS	101.0	100.0	104.0	3.93	< 0.001	mg/L
Beryllium - ICP-MS	101.0	101.0	103.0	1.96	< 0.001	mg/L
Cadmium - ICP-MS	100.0	102.0	103.0	0.98	< 0.001	mg/L
Calcium - ICP-OES	99.0	94.0	96.0	1.57		
Chloride - Ion Chromatography	102.0	103.0	103.0	0.19	< 0.5	mg/L
Chromium - ICP-MS	102.0	102.0	103.0	0.98	< 0.001	mg/L
Conductivity	99.0			1.24		
Copper - ICP-MS	102.0	103.0	104.0	0.97	< 0.001	mg/L
Cyanide,Total	85.0	94.0			< 0.005	mg/L
Fluoride - Ion Chromatography	100.0	101.0	102.0	0.59	< 0.1	mg/L
Iron - ICP-OES	102.0	103.0	104.0	1.16		
Lead - ICP-MS	105.0	105.0	106.0	0.95	< 0.001	mg/L
Magnesium - ICP-OES	99.0	102.0	103.0	1.47		
Manganese - ICP-MS	102.0	102.0	108.0	5.71	< 0.01	mg/L
MBAS Surfactants	96.0				< 0.05	mg/L
Mercury - AA Cold Vapor	99.0	109.0	110.0	0.66	< 0.0002	mg/L
Nickel - ICP-MS	101.0	102.0	104.0	1.94	<0.006	mg/L
Nitrate-N - Ion Chromatography	102.0	101.0	102.0	0.99	< 0.05	mg/L
Nitrite-N - Ion Chromatography	98.0	98.0	98.0	0.00	< 0.05	mg/L
pH				0.13		
pH - Temperature				2.20		
Potassium - ICP-OES	100.0	100.0	102.0	0.99		
Selenium - ICP-MS	102.0	102.0	104.0	2.14	<0.005	mg/L

John Kobza, Ph.D. Laboratory Director Page 4 of 5

1135 Financial Blvd. Reno, NV 89502-2348 Phone (775) 857-2400 FAX (775) 857-2404 sem@sem-analytical.com John C. Seher Special Consultant Quality Assurance Manager

Quality Control Report

Eco Logic Consulting Engineers Attn: Dale Bugenig 10381 Double R Blvd. Reno, NV 89521
 Date:
 8/17/2006

 Client:
 ECO-500

 Taken by:
 Client

 PO #:
 Client

Parameter	LCS, % Recovery	MS, % Recovery	MSD, % Recovery	RPD, %	Method	Blank
Silver - ICP-MS	101.0	95.0	99.0	4.12	<0.001	mg/L
Sodium - ICP-OES	97.0	99.0	100.0	0.50		
Sulfate - Ion Chromatography	100.0	101.0	101.0	0.00	<0.2	mg/L
Thallium - ICP-MS	102.0	105.0	105.0	0.00	<0.0005	mg/L
Total Dissolved Solids		99.0		7.11	<10	mg/L
Turbidity	102.0			1.77		
Uranium - ICP-MS	100.0	98.0	998.0	164.10	< 0.001	mg/L
Zinc - ICP-MS	110.0	101.0	102.0	0.99	< 0.03	mg/L
8	y Control Standard ercent Difference	MS- Ma	trix Spike	MSD- Matrix S	Spike Duplica	ate

Quality Control Report

John Kobza, Ph.D. Laboratory Director Page 5 of 5

1135 Financial Blvd. Reno, NV 89502-2348 Phone (775) 857-2400 FAX (775) 857-2404 sem@sem-analytical.com John C. Seher Special Consultant Quality Assurance Manager

ANALYSIS REPORT ASBESTOS IN DRINKING WATER Transmission Electron Microscopy*

Client: Contact: Street: City/state/zip:	Sierra Environmental Monitoring John Kobza 1135 Financial Blvd Reno NV 89502	Page: Client Number: Report Number: Date/time Received:	1 of 1 A30514 T010883 7/18/06 1026
Site: Job ID:	JLRG-1 S200607	Date/time filtered: Analyst(s):	7/18/06 1343 RE
P.O. #:	06-469	Date Analyzed:	7/19/06
Date/time collected:	7/14/06 1730	Date Reported:	7/19/06
Hold time, hrs	>48		
Filter type:	25mm Mixed Cellulose Ester		
Pore size	0.22 μm		

	ANALYT	ICAL RESULTS		
Client Sample Number	S200607-0615			
Lab Sample Number	20042507			
Volume Filtered, mL	30			
Filter Area, mm2	190			
Grid Opening Area, mm2	0.0093			
Number of Grids Analyzed	4			
Area Analyzed, mm2	0.0372			
# Asbestos Fibers ≥10um	0			
Analytical Sensitivity, MFL	0.2			
Asbestos Concentration,	<0.2			
≥10um in length, MFL				
Asbestos Type(s) Detected**	ND			
Water Blank Conc., MFL	n/a		·	
95% Upper Conf. Limit	0.6			
95% Lower Conf. Limit	0			

Mark S. Floyd, EM Supervisor, Hayward Laboratory

* Method 100.2 (EPA/600/R-94/134). Results are reported in Millions of Fibers per Liter (MFL) over 10 µm in length.

** Asbestos types: CH=chrysotile; AM=amosite; CR=crocidolite; AC=actinolite; TR=tremolite; AN=anthophyllite; ND=none detected.

3777 Depot Road, Suite 409, Hayward, California 94545 Telephone: 510-887-8828 Fax: 510-887-4218

Sierra Environmental Monitoring, Inc. 1135 Financial Blvd. - Reno - Nevada - 89502

Forensic Laboratory Sub-Contract Chain of Custody Report

1155 Гипански Бруц. - Кепо - Nevada - 89502 Phone: (775) 857-2400 Fax: (775) 857-2404 Email: sem@sem-analytical.com

PO #06-469

				Sampled By: D. Bugenig	Compliance:	
Date Sampled		Time Sample Type Sampled	Sample Identification	Analyses Requested	Remarks	Turn Around Time
7/14/2006	5:30:00 AM	Drinking Water	7/14/2006 5:30:00 AM Drinking Water S200607-0615 - JLRG-1	Asbestos		Normal

Blay to Runaut of Rollpor Client

Signature	Print Name	Company	Date	Time
Relinquished By Control By Contro	i the second sec	ACM D	7-14-66	230
Received By:	NICOR LOUNDER		7-18-06	1026
Relinquished By:			•	
Received By:				

Page 1 of 1

GENERAL ENGINEERING LABORATORIES, LLC

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SEMI001 Sierra Environmental Monitoring, Inc.

Client SDG: 167369 GEL Work Order: 167369

The Qualifiers in this report are defined as follows:

* A quality control analyte recovery is outside of specified acceptance criteria

** Analyte is a surrogate compound

U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.

ND The analyte concentration is not detected above the detection limit.

The above sample is reported on an "as received" basis.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories, LLC standard operating procedures. Please direct any questions to your Project Manager, Joanne Harley.

Reviewed by

GENERAL ENGINEERING LABORATORIES, LLC 2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company Address :	: Sierra Env. Moni 1135 Financial B	<u> </u>	2									
	Reno, Nevada 89	502					מ	om omt D	ata. Ana	t 0 ~	004	
Contact:	Mr. John Kobza						K	ероп D	ate: Augi	ust 8, 2	.000	
Project:	Drinking Water	Radioche	em Analysis									
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	D:	JLRG-1/S200 167369001 Drinking Wata 14-JUL-06 0 19-JUL-06 Client	er (Potable		Proi Clie	ect: nt ID:	SEMI SEMI	00204 001			
Parameter	Qualifier	Result		DL	RL	Units	DF	Analy	stDate	Time	Batch	Method
Rad Gas Flow Proport	tional Counting											
Gross Alpha/Beta in l	Drinking Water EPA	900.0										
Alpha	U	0.874	+/-0.885	1.58	3.00	pCi/L		JXS4	08/02/06	1035	549712	1
Beta	U	1.87	+/-1.90	3.88	4.00	pCi/L						
Radium–228 in Drink	-											
Radium-228	U	0.118	+/0.274	0.633	1.00	pCi/L		AXDI	07/31/06	1457	550324	2
Rad Radium–226												
Radium-226 in Drink	0							~ ~				-
Radium-226	U	0.409	+/-0.491	0.810	1.00	pCi/L		SG	08/04/06	2105	549548	3
The following Analyt	ical Methods were p	erformed										
Method	Description				Ana	lyst Comm	ents					
1	EPA 900.0											
2	EPA 904.0											
3	EPA 903.1											
Surrogate/Tracer reco	very Test				Result	Nomi	nal F	tecover	y% A	Accept	able Lii	nits -
Radium-228	Radium-22	28 in Drin	king Water EPA	904.0				72		(25%	6-125%)

GENERAL ENGINEERING LABORATORIES, LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary Report Date: August 8, 2006 Sierra Env. Monitoring, Inc Page 1 of 2 1135 Financial Boulevard Reno, Nevada Contact: Mr. John Kobza Workorder: 167369 **OC** RPD% REC% Parmname NOM Sample Qual Units Range Anlst Date Time Rad Gas Flow 549712 Batch QC1201139177 167365002 DUP Alpha U 0.673 U 0.113 0 (0%-20%) JXS4 07/22/06 12:12 pCi/L +/-0.791 +/-1.20 Beta U 1.94 U 0 (0% - 20%)2.65 pCi/L +/-1.29 +/-1.77 QC1201139178 167104005 DUP Alpha U 0.0163 U -0.0964 0 (0%-20%) 07/23/06 12:05 pCi/L +/-0.378 +/-0.443 Beta 1.29 U 16 (0%-20%) 1.52 pCi/L +/-0.589 +/-0.813 QC1201139181 LCS 35.9 (80%-120%) 07/22/06 10:44 Alpha 32.7 91 pCi/L +/-3.44 Beta 105 103 98 (80%-120%) pCi/L +/-5.02 QC1201139176 MB 07/22/06 12:12 U Alpha -0.236 pCi/L +/-0.396 Beta U -0.555 pCi/L +/-0.827 QC1201139179 167104005 MS U Alpha 216 0.0163 76 (70%-130%) 07/22/06 10:44 163 pCi/L +/-0.378 +/-20.1 629 Beta 1.29 98 (70%-130%) 618 pCi/L +/-0.589 +/-30.1 QC1201139180 167104005 MSD 216 U 0.0163 9 83 (0%-20%)-Alpha 178 pCi/L د ر. د +/-0.378 +/-20.9 629 99 (0%-20%) Beta 1.29 1 674 pCi/L +/-0.589 +/-30.4 Batch 550324 QC1201140701 167361001 DUP (0%-20%) AXD1 07/31/06 14:56 5.05 Radium-228 5.89 15 pCi/L +/-0.721 +/-0.743 QC1201140703 LCS Radium-228 8.36 9.12 109 (80%-120%) 07/31/06 16:02 pCi/L +/-0.969 QC1201140700 MB Radium-228 U 0.372 07/31/06 14:56 pCi/L +/-0.298 QC1201140702 167361001 MS Radium-228 29.3 5.05 103 (70%-130%) 35.4 pCi/L +/-0.721 +/-3.21

Rad Ra-226

GENERAL ENGINEERING LABORATORIES, LLC

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Workorder: 167369									Page 2	of 2	
Parmname	NOM		Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Ra-226 Batch 549548											
QC1201138767 167365001 DUP Radium-226		U	0.158 +/-0.400		0.900 +/-0.572	pCi/L	140*		(0%-20%)	SG	08/05/06 14:40
QC1201138769 LCS Radium-226	41.8				43.7 +/-2.51	pCi/L		104	(80%-120%)		08/06/06 18:24
QC1201138766 MB Radium-226				U	0.169 +/-0.262	pCi/L					08/05/06 14:40
QC1201138768 167365001 MS Radium-226	83.7	U	0.158 +/-0.400		89.8 +/-4.97	pCi/L		107	(80%-120%)		08/06/06 18:24

Notes:

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- < Result is less than value reported
- > Result is greater than value reported
- A The TIC is a suspected aldol-condensation product
- B Target analyte was detected in the associated blank
- BD Results are either below the MDC or tracer recovery is low
- C Analyte has been confirmed by GC/MS analysis
- D Results are reported from a diluted aliquot of the sample
- H Analytical holding time was exceeded
- J Value is estimated

N/A Spike recovery limits do not apply. Sample concentration exceeds spike concentration by 4X or more

- R Sample results are rejected
- U Analyte was analyzed for, but not detected above the MDL, MDA, or LOD.
- UI Gamma Spectroscopy--Uncertain identification
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Y QC Samples were not spiked with this compound
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL
- h Preparation or preservation holding time was exceeded

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more.

^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/-

the RL is used to evaluate the DUP result.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

1135 Financial Blvd. - Reno - Nevada - 89502 Sierra Environmental Monitoring, Inc.

Phone: (775) 857-2400 Fax: (775) 857-2404 Email: sem@sem-analytical.com

167369/. General EngineeringSub-Contract Chain of Custody Report

PO #06-471

Normal		Radium 228 - Radiological	7/14/2006 5:30:00 AM Drinking Water S200607-0615 - JLRG-1	Drinking Water S	5:30:00 AM	7/14/2006
Normal		Radium 226 - Radiological	7/14/2006 5:30:00 AM Drinking Water S200607-0615 - JLRG-1	Drinking Water S	5:30:00 AM	7/14/2006
INULIAI						
Nonal		Gross Alpha and Beta Radiological	7/14/2006 5:30:00 AM Drinking Water S200607-0615 - JLRG-1	Drinking Water S	5:30:00 AM	7/14/2006
Time					Sampled Sampled	Sampled
Turn Around	Remarks	Analyses Requested	Sample Identification	Sample Type		
·	Compliance:	Sampled By: D. Bugenig		2 	i	

Laboratory Report

for

Sierra Environmental Monitoring, Inc. 1135 Financial Blvd.

Reno, NV 89502

Attention: John Kobza Fax: (775) 857-2404

DATE OF ISSUE AUG 1 4

YOM Yolanda Martin Project Manager

Report#: 179167 DRINKING

Laboratory certifies that the test results meet all NELAC requirements unless noted in the Comments section or the Case Narrative. Following the cover page are Comments,QC Report,QC Summary,Data Report,Hits Report, totaling 37 page[s].

179167

Sierra Environmental Monitoring, Inc.

1135 Financial Blvd. - Reno - Nevada - 89502

MWH Laboratory Sub-Contract Chain of Custody Report PO #06-470

Phone: (775)	857-2400 Fax	x: (775) 857-2404	Phone: (775) 857-2400 Fax: (775) 857-2404 Email: sem@sem-analytical.com	Sampled By: D. Bugenig	Compliance: X ()	r O #00-4 /0
Date Sampled	Time Sampled	Sample Type	Sample Identification	Analyses Requested	Remarks	Turn Around Time
7/14/2006	5:30:00 AM	Drinking Water	Drinking Water S200607-0615 - JLRG-1	Carbamates (ML531) (EPA 531.1)	Pro Sr.	Normal
7/14/2006	5:30:00 AM		Drinking Water S200607-0615 - JLRG-1	Diquat (EPA 549.2)		Normal
7/14/2006	5:30:00 AM	Drinking Water	Drinking Water S200607-0615 - JLRG-1	EDB-DBC (EPA 504.1)		Normal
7/14/2006	5:30:00 AM	Drinking Water	Drinking Water S200607-0615 - JLRG-1	Endothall (EPA 548.1)	A A A MAG	Normal
7/14/2006	5:30:00 AM		Drinking Water S200607-0615 - JLRG-1	Glyphosate (EPA 547)		Normal
7/14/2006	5:30:00 AM	Drinking Water	Drinking Water S200607-0615 - JLRG-1	Herbicides (NPS3) (EPA 515.1)		Normal
7/14/2006	5:30:00 AM	Drinking Water	Drinking Water S200607-0615 - JLRG-1	Pesticides and PCBs (PESTSDW) (EPA 508)		Normal
7/14/2006	5:30:00 AM	Drinking Water	Drinking Water S200607-0615 - JLRG-1	SVOCs (ML525) (EPA 525)		Normal
7/14/2006	5:30:00 AM	Drinking Water	Drinking Water S200607-0615 - JLRG-1	VOCs (VOASDWA) (EPA 524.2)		Normal

MWH Laboratories 750 Royal Oaks Drive, Monrovia, CA 91016 PHONE: 626-386-1100/FAX: 626-386-1101

ACKNOWLEDGMENT OF SAMPLES RECEIVED

Sierra Environmental Monitoring, Inc. 1135 Financial Blvd. Customer Code: SIERRAENV Reno, NV 89502 PO#: 06-470 Attn: John Kobza Group#: 179167 Phone: (775) 857-2400 Project#: DRINKING Proj Mgr: Yolanda Martin Phone: (626) 386-1104

The following samples were received from you on 07/18/06. They have been scheduled for the tests listed beside each sample. If this information is incorrect, please contact your service representative. Thank you for using MWH Laboratories.

Sample# Sam	mple Id	Tests Schedu	Matrix led	Sample Date
2607180168 S2 2607180205 TR		@DIQUAT @ED @VOASDWA END	OTHAL GLYPHOS Water	14-jul-2006 05:30:00 ML515.4 @ML525 @ML531.2 14-jul-2006 00:00:00
		Test Acro	nym Description	
Test Acron	ym Descr	ription		
@DIQUA @EDB-D @ML505 @ML515 @ML525 @ML531 @VOASD ENDOTH	BC EDB a Pesti .4 Herbi 525 S .2 Aldic WA Regul	at and Paraqua and DBCP by GC cides by EPA cides by 515. Semivolatiles arbs by 531.2 ated VOCs plu hall	-ECD 505 4 by GC/MS	

Report Comments #179167

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1100 1 800 566 LABS (1 800 566 5227)

(QC Ref#: 2607180168)
 Test: Di-n-Butylphthalate (ML/EPA 525.2)
 L3- The associated blank spike recovery was above method

acceptance limits. Test: Methoxychlor (ML/EPA 505)

L4- The associated blank spike recovery was below method acceptance limits.

	MWH Laboratories
--	------------------

Laboratory Hits Report #179167

Sierra Environmental Monitoring, Inc. John Kobza 1135 Financial Blvd. Reno , NV 89502

Samples Received

18-jul-2006 14:41:23

Analyzed	Sample#	Sample ID	Result	Federal MCL	UNITS	MRL
					· · · · · · · · · · · · · · · · · · ·	

2607180168 S200607-0615-JLRG-1

2607180205 TRAVEL BLANK-ANALYZE

SUMMARY OF POSITIVE DATA ONLY.

QC Ref# Method

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 385 1101 1 800 566 LABS (1 800 566 5227)

Prepared Analyzed

Units

MRL

Dilution

Result

Sierra Environmental Monitoring, Inc.	Samples Received
John Kobza 1135 Financial Blvd.	07/18/06
Reno, NV 89502	

Analyte

3200607	-0615-JL	RG-1	(2607180168) Sampled	on 07/14/06	05:30		
7/19/06 07	7/26/06 00:00	327594	(ML/EPA 548.1) Endothall	ND	ug/l	5.0	1
07	/24/06 00:00	327078	(ML/EPA 547) Glyphosate	ND	ug/l	6.0	1
			525 Semivolatiles by GC/H	MS			
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) 2,4-Dinitrotoluene	ND	ug/l	0.1	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) alpha-Chlordane	ND	ug/l	0.05	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Diazinon (Qualitative)	ND	ug/l	0.1	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Acenaphthylene	ND	ug/l	0.1	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Alachlor	ND	ug/l	0.05	1
7/21/06 07	7/25/06 21:13	327689	(ML/EPA 525.2) Aldrin	ND	ug/l	0.05	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Anthracene	ND	ug/l	0.02	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Atrazine	ND	ug/l	0.05	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Benz(a)Anthracene	ND	ug/l	0.05	1
/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Benzo(a)pyrene	ND	ug/l	0.02	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Benzo(b)Fluoranthene	ND	ug/l	0.02	1
7/21/06 07	2/25/06 21:13	327689	(ML/EPA 525.2) Benzo(g,h,i)Perylene	ND	ug/l	0.05	l
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Benzo(k)Fluoranthene	ND	ug/l	0.02	l
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Di(2-Ethylhexyl)phthala	ite ND	ug/l	0.6	l
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Butylbenzylphthalate	ND	ug/l	0.5	l
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Bromacil	ND	ug/l	0.2	1
/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Butachlor	ND	ug/l	0.05	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Caffeine by method 525m	nod ND	ug/l	0.02	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Chrysene	ND	ug/l	0.02	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Dibenz(a,h)Anthracene	ND	ug/l	0.05	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Di-(2-Ethylhexyl)adipat	e ND	ug/l	0.6	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Diethylphthalate	ND	ug/l	0.5	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Dieldrin	ND	ug/l	0.2	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Dimethylphthalate	ND	ug/l	0.5	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Dimethoate	ND	ug/l	0.1	1
7/21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Di-n-Butylphthalate	ND (L3)	ug/l	1.0	1
//21/06 07	/25/06 21:13	327689	(ML/EPA 525.2) Endrin	ND	ug/l	0.1	l

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring,

Inc.

(continued)

Prepared	Analyzed	QC Ref#	Method	Analyte	Result	Units	MRL	Dilution
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Fluoranthene	ND	ug/l	0.1	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Fluorene	ND	ug/l	0.05	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	gamma-Chlordane	ND	ug/l	0.05	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Hexachlorobenzene	ND	ug/l	0.05	l
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Hexachlorocyclopentadiene	ND	ug/l	0.05	1
07/21/06	07/25/06 21:13	327689	(_ML/EPA 525.2)	Heptachlor	ND	ug/l	0.04	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Heptachlor Epoxide (isomer B)	ND	ug/l	0.02	l
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Indeno(1,2,3,c,d)Pyrene	ND	ug/l	0.05	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Isophorone	ND	ug/l	0.5	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Lindane	ND	ug/l	0.02	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Methoxychlor	ND	ug/l	0.1	l
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Metribuzin	ND	ug/l	0.05	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Molinate	ND	ug/l	0.1	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Metolachlor	ND	ug/l	0.05	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	trans-Nonachlor	ND	ug/l	0.05	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Pentachlorophenol	ND	ug/l	1.0	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Phenanthrene	ND	ug/l	0.02	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Propachlor	ND	ug/l	0.05	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Pyrene	ND	ug/l	0.05	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Simazine	ND	ug/l	0.05	l
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Thiobencarb	ND	ug/l	0.2	1
07/21/06	07/25/06 21:13	327689	(ML/EPA 525.2)	Trifluralin	ND	ug/l	0.1	1
			(ML/EPA 525.2)	Perylene-dl2(70-130)	86	% Rec		
			(ML/EPA 525.2)	Triphenylphosphate(70-130)	117	₹ Rec		
			(ML/EPA 525.2)	1.3-dimethyl-2-nbenz(70-130)	102	% Rec		
			Aldicarbs	by 531.2				
	07/28/06 11:54	328540	(ML/EPA 531.2)	3-Hydroxycarbofuran	ND	ug/l	0.5	1
	07/28/06 11:54	328540	(ML/EPA 531.2)	Aldicarb (Temik)	ND	ug/l	0.5	1
	07/28/06 11:54	328540	(ML/EPA 531.2)	Aldicarb sulfone	ND	ug/l	0.5	1
	07/28/06 11:54	328540	(ML/EPA 531.2)	Aldicarb sulfoxide	ND	ug/l	0.5	1
	07/28/06 11:54	328540	(ML/EPA 531.2)	Baygon (Propoxur)	ND	ug/l	0.5	1
	07/28/06 11:54	328540	(ML/EPA 531.2)	Carbofuran (Furadan)	ND	ug/l	0.5	1
	07/28/06 11:54	328540	(ML/EPA 531.2)	Carbaryl	ND	ug/l	0.5	1
	07/28/06 11:54	328540	(ML/EPA 531.2)	Methiocarb	ND	ug/l	0.5	1

Prepared	Analyzed	QC Ref#	Method	Analyte	Result	Units	MRL	Dilution
	07/28/06 11:54	328540	(ML/EPA 531.2) Methomyl	ND	ug/l	0.5	1
	07/28/06 11:54	328540	(ML/EPA 531.2) Oxamyl (Vydate)	ND	ug/l	0.5	l
			(ML/EPA 531.2)) BDMC(70-130)	110	% Rec		
			Diquat and	Paraquat				
07/19/06	07/26/06 00:00	.327543.	(ML/EPA 549.2)	Diquat	ND	ug/l	0.4	1
07/19/06	07/26/06 00:00	327543	(ML/EPA 549.2)	Paraguat	ND	ug/l	2.0	1
			EDB and DB	CP by GC-ECD				
07/22/06	07/22/06 14:22	327032	(ML/EPA 504.1)	Dibromochloropropane (DBCP)	ND	ug/l	0.01	1
07/22/06	07/22/06 14:22	327032	(ML/EPA 504.1)	Ethylene Dibromide (EDB)	ND	ug/l	0.01	1
			Herbicides	by 515.4				
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	2,4,5-T	ND	ug/l	0.2	1
07/21/05	07/25/06 00:00	326940	(ML/EPA 515.4)	2,4,5-TP (Silvex)	ND	ug/l	0.2	1
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	2,4-D	ND	ug/l	0.1	1
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	2,4-DB	ND	ug/l	2.0	1
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	Dichlorprop	ND	ug/l	0.5	1
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	Acifluorfen	ND	ug/l	0.2	1
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	Bentazon	ND	ug/l	0.5	1
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	Dalapon	ND	ug/l	1.0	1
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	3,5-Dichlorobenzoic acid	ND	ug/l	0.5	1
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	Tot DCPA Mono&Diacid Degradate	ND	ug/l	1.0	1
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	Dicamba	ND	ug/l	0.08	l
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	Dinoseb	ND	ug/l	0.2	1
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	Pentachlorophenol	ND	ug/l	0.04	1
07/21/06	07/25/06 00:00	326940	(ML/EPA 515.4)	Picloram	ND	ug/l	0.1	1
			(ML/EPA 515.4)	2.4-DCPAA (70-130)	104	% Rec		
			(ML/EPA 515.4)	4.4-Dibrombiphenyl(60-140)	100	% Rec		
			Pesticides	by EPA 505				
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	PCB 1016 Aroclor	ND	ug/l	0.07	1
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	PCB 1221 Aroclor	ND	ug/l	0.1	l
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	PCB 1232 Aroclor	ND	ug/l	0.1	l
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	PCB 1242 Aroclor	ND	ug/l	0.1	l

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Prepared	Analyzed	QC Ref#	Method		Analyte	Result	Units	MRL	Dilution
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	PCB 1248 Aroclor	ND	ug/l	0.1	1
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	PCB 1254 Aroclor	ND	ug/l	0.1	l
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	PCB 1260 Aroclor	ND	ug/l	0.1	l
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	Alachlor (Alanex)	ND	ug/l	0.1	l
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	Aldrin	ND	ug/l	0.01	1
07/20/06	07/21/06 15:33	326872	(.ML/EPA 505)	Chlordane	ND	ug/l	0.1	l
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	Dieldrin	ND	ug/l	0.01	1
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	Endrin	ND	ug/l	0.01	1
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	Heptachlor	ND	ug/l	0.01	1
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	Heptachlor Epoxide	ND	ug/l	0.01	l
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	Lindane (gamma-BHC)	ND	ug/l	0.01	1
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	Methoxychlor	NA(L4)	ug/l	0.05	l
07/20/06	07/21/06 15:33	326872	(ML/EPA 505)	Total PCBs	ND	ug/l	0.07	l
07/20/06	07/21/06 15:33	326872	(ML/EPA 505	}	Toxaphene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	-		VOCs plus Lists 1&3	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,1,1-Trichloroethane	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,1,2,2-Tetrachloroethane	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,1,2-Trichloroethane	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,1-Dichloroethane	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,1-Dichloroethylene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,1-Dichloropropene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,2,3-Trichlorobenzene	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,2,3-Trichloropropane	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,2,4-Trichlorobenzene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,2,4-Trimethylbenzene	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2	}	1,2-Dichloroethane	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,2-Dichloropropane	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,3,5-Trimethylbenzene	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	1,3-Dichloropropane	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2	}	p-Dichlorobenzene (1,4-DCB)	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2	}	2,2-Dichloropropane	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	2-Butanone (MEK)	ND	ug/l	5.0	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	o-Chlorotoluene	ND	ug/l	0.5	l

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Prepared	Analyzed	QC Ref#	Method		Analyte	Result	Units	MRL	Dilution
	07/20/06 08:20	326175	(ML/EPA 524.2	}	p-Chlorotoluene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	4-Methyl-2-Pentanone (MIBK)	ND	ug/l	5.0	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Benzene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Bromobenzene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Bromomethane (Methyl Bromide)	ND	ug/l	0.5	1
	.07/20/06 08:20	326175 .	(.ML/EPA 524.2)	Bromoethane	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	cis-1,2-Dichloroethylene	ND	ug/l	0.5	1.
	07/20/06 08:20	326175	(ML/EPA 524.2)	Chlorobenzene	ND	ug/l	0.5	1
·	07/20/06 08:20	326175	(ML/EPA 524.2)	Carbon Tetrachloride	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	cis-1,3-Dichloropropene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Bromoform	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Chloroform (Trichloromethane)	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Bromochloromethane	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/ÉPA 524.2)	Chloroethane	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	Chloromethane(Methyl Chloride)	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Chlorodibromomethane	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Dibromomethane	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Bromodichloromethane	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Dichloromethane	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Di-isopropyl ether	ND	ug/l	3.0	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Ethyl benzene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Dichlorodifluoromethane	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Fluorotrichloromethane-Freon11	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	Hexachlorobutadiene	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	Isopropylbenzene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	m-Dichlorobenzene (1,3-DCB)	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	m,p-Xylenes	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	Methyl Tert-butyl ether (MTBE)	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Naphthalene	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	n-Butylbenzene	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	n-Propylbenzene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	o-Xylene	ND	ug/l	0.5	l
	07/20/05 08:20	326175	(ML/EPA 524.2)	o-Dichlorobenzene (1,2-DCB)	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	Tetrachloroethylene (PCE)	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2	}	p-Isopropyltoluene	ND	ug/l	0.5	1

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

-	Analyzed	QC Ref#	Method	Analyte	Result	Units	MRL	Dilution
	07/20/06 08:20	326175	(ML/EPA 524.2)	sec-Butylbenzene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Styrene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	trans-1,2-Dichloroethylene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	tert-amyl Methyl Ether	ND	ug/l	3.0	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	tert-Butyl Ethyl Ether	ND	ug/l	3.0	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	tert-Butylbenzene	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	Trichloroethylene (TCE)	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	Trichlorotrifluoroethane (Freon	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	trans-1,3-Dichloropropene	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	Toluene	ND	ug/l	0.5	1
	07/20/06 08:20	326175	(ML/EPA 524.2)	Total 1,3-Dichloropropene	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	Total THM	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	Total xylenes	ND	ug/l	0.5	l
	07/20/06 08:20	326175	(ML/EPA 524.2)	Vinyl chloride (VC)	ND	ug/l	0.3	1
			(EPA 524.2)	Toluene-d8(70-130)	103	* Rec		
			(EPA 524.2)	1.2-Dichloroethane-d4(70-130)	116	% Rec		
			(EPA 524.2)	4-Bromofluorobenzene(70-130)	110	* Rec		
TRAVE	L BLANK-AN	IALYZE	(EPA 524.2) (260718020)					
TRAVE	L BLANK-AN	IALYZE	(260718020)					
	L BLANK-AN		(260718020) EDB and DB	5) Sampled on 07		00:00	0.01	1
07/22/06		326849	(260718020) EDB and DB((ML/EPA 504.1)	5) Sampled on 07 CP by GC-ECD	/14/06 (0.01 0.01	1 1
07/22/06	07/22/06 15:53	326849	(260718020) EDB and DB((ML/EPA 504.1) (ML/EPA 504.1)	5) Sampled on 07 CP by GC-ECD Dibromochloropropane (DBCP)	/14/06 (0 0:00		
07/22/06	07/22/06 15:53	326849 326849	(260718020) EDB and DBC (ML/EPA 504.1) (ML/EPA 504.1) Regulated V	5) Sampled on 07 CP by GC-ECD Dibromochloropropane (DBCP) Ethylene Dibromide (EDB)	/14/06 (ug/1 ug/1		
07/22/06	07/22/06 15:53 07/22/06 15:53	326849 326849 326175	(260718020) EDB and DBC (ML/EPA 504.1) (ML/EPA 504.1) Regulated V (ML/EPA 524.2)	5) Sampled on 07 CP by GC-ECD Dibromochloropropane (DBCP) Ethylene Dibromide (EDB) VOCs plus Lists 1&3 1,1,1,2-Tetrachloroethane	ND ND	ug/1 ug/1 ug/1	0.01	1
07/22/06	07/22/06 15:53 07/22/06 15:53 07/20/06 08:48	326849 326849	(260718020) EDB and DBC (ML/EPA 504.1) (ML/EPA 504.1) Regulated 7 (ML/EPA 524.2) (ML/EPA 524.2)	5) Sampled on 07 CP by GC-ECD Dibromochloropropane (DBCP) Ethylene Dibromide (EDB) VOCs plus Lists 1&3	ND ND ND	ug/1 ug/1 ug/1 ug/1 ug/1	0.01 0.5 0.5	1
07/22/06	07/22/06 15:53 07/22/06 15:53 07/20/06 08:48 07/20/06 08:48	326849 326849 326175 326175 326175	(260718020) EDB and DB((ML/EPA 504.1) (ML/EPA 504.1) Regulated T (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2)	5) Sampled on 07 CP by GC-ECD Dibromochloropropane (DBCP) Ethylene Dibromide (EDB) VOCs plus Lists 1&3 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ND ND ND ND ND	ug/1 ug/1 ug/1	0.01	1 1 1
07/22/06	07/22/06 15:53 07/22/06 15:53 07/20/06 08:48 07/20/06 08:48 07/20/06 08:48	326849 326849 326175 326175 326175 326175 326175	(260718020) EDB and DB((ML/EPA 504.1) (ML/EPA 504.1) Regulated 7 (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2)	5) Sampled on 07 CP by GC-ECD Dibromochloropropane (DBCP) Ethylene Dibromide (EDB) VOCs plus Lists 1&3 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.01 0.5 0.5 0.5	1 1 1
07/22/06	07/22/06 15:53 07/22/06 15:53 07/20/06 08:48 07/20/06 08:48 07/20/06 08:48	326849 326849 326175 326175 326175 326175 326175 326175	(260718020) EDB and DBC (ML/EPA 504.1) (ML/EPA 504.1) Regulated V (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2)	5) Sampled on 07 CP by GC-ECD Dibromochloropropane (DBCP) Ethylene Dibromide (EDB) VOCs plus Lists 1&3 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane	ND ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l	0.01 0.5 0.5 0.5 0.5	1 1 1 1
07/22/06	07/22/06 15:53 07/22/06 15:53 07/20/06 08:48 07/20/06 08:48 07/20/06 08:48 07/20/06 08:48	326849 326849 326175 326175 326175 326175 326175 326175 326175	(260718020) EDB and DBC (ML/EPA 504.1) (ML/EPA 504.1) Regulated V (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2)	5) Sampled on 07 CP by GC-ECD Dibromochloropropane (DBCP) Ethylene Dibromide (EDB) VOCs plus Lists 1&3 1,1,1,2-Tetrachloroethane 1,1,2.2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	ND ND ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.01 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1
07/22/06	07/22/06 15:53 07/22/06 15:53 07/20/06 08:48 07/20/06 08:48 07/20/06 08:48 07/20/06 08:48 07/20/06 08:48	326849 326849 326175 326175 326175 326175 326175 326175 326175 326175	(260718020) EDB and DBG (ML/EPA 504.1)) (ML/EPA 504.1)) Regulated V (ML/EPA 524.2)) (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2) (ML/EPA 524.2)	5) Sampled on 07 CP by GC-ECD Dibromochloropropane (DBCP) Ethylene Dibromide (EDB) VOCs plus Lists 1&3 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.01 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1
07/22/06	07/22/06 15:53 07/22/06 15:53 07/20/06 08:48 07/20/06 08:48 07/20/06 08:48 07/20/06 08:48 07/20/06 08:48	326849 326849 326175 326175 326175 326175 326175 326175 326175 326175 326175	(260718020) EDB and DBC (ML/EPA 504.1) (ML/EPA 504.1) Regulated V (ML/EPA 524.2) (ML/EPA 524.2)	5) Sampled on 07 CP by GC-ECD Dibromochloropropane (DBCP) Ethylene Dibromide (EDB) VOCs plus Lists 1&3 1,1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,1-Dichloropropene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.01 0.5 0.5 0.5 0.5 0.5 0.5	1 1 1 1 1 1 1

Sierra Environmental Monitoring, Inc.

(continued)

Prepared	Analyzed	QC Ref#	Method	Analyte	Result	Units	MRL	Dilution
	07/20/06 08:48	326175	(ML/EPA 524.2) 1,2,4-Trimethylbenzene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) 1,2-Dichloroethane	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) 1,2-Dichloropropane	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) 1,3,5-Trimethylbenzene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) 1,3-Dichloropropane	ND	ug/l	0.5	l
• •	07/20/06.08:48	326175	(ML/EPA 524.2)_p-Dichlorobenzene (1,4-DCB)	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) 2,2-Dichloropropane	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) 2-Butanone (MEK)	ND	ug/l	5.0	1
	07/20/06 08:48	326175	(ML/EPA 524.2) o-Chlorotoluene	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) p-Chlorotoluene	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) 4-Methyl-2-Pentanone (MIBK)	ND	ug/l	5.0	1
	07/20/06 08:48	326175	(ML/EPA 524.2) Benzene	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) Bromobenzene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) Bromomethane (Methyl Bromide)	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) Bromoethane	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) cis-1,2-Dichloroethylene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) Chlorobenzene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) Carbon Tetrachloride	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) cis-1,3-Dichloropropene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) Bromoform	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) Chloroform (Trichloromethane)	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) Bromochloromethane	ND	ug/l	0.5	ı .
	07/20/06 08:48	326175	(ML/EPA 524.2) Chloroethane	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) Chloromethane(Methyl Chloride)	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) Chlorodibromomethane	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) Dibromomethane	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) Bromodichloromethane	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) Dichloromethane	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) Di-isopropyl ether	ND	ug/l	3.0	1
	07/20/06 08:48	326175	(ML/EPA 524.2) Ethyl benzene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) Dichlorodifluoromethane	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) Fluorotrichloromethane-Freonl1	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) Hexachlorobutadiene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2) Isopropylbenzene	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2) m-Dichlorobenzene (1,3-DCB)	ND	ug/l	0.5	1

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Prepared	Analyzed	QC Ref#	Method		Analyte	Result	Units	MRL	Dilution
	07/20/06 08:48	326175	(ML/EPA 524.2	}	m,p-Xylenes	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2)	Methyl Tert-butyl ether (MTBE)	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2)	Naphthalene	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2)	n-Butylbenzene	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2)	n-Propylbenzene	ND	ug/l	0.5	1
	07/20/05 08:48	326175 -	(ML/EPA 524.2)	o-Xylene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2)	o-Dichlorobenzene (1,2-DCB)	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2)	Tetrachloroethylene (PCE)	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2)	p-Isopropyltoluene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2)	sec-Butylbenzene	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2	}	Styrene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2)	trans-1,2-Dichloroethylene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2	}	tert-amyl Methyl Ether	ND	ug/l	3.0	1
	07/20/06 08:48	326175	(ML/EPA 524.2	}	tert-Butyl Ethyl Ether	ND	ug/l	3.0	1
	07/20/06 08:48	326175	(ML/EPA 524.2)	tert-Butylbenzene	ND	ug/l	0.5	l
	07/20/06 08:48	326175	(ML/EPA 524.2)	Trichloroethylene (TCE)	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2)	Trichlorotrifluoroethane (Freon	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2)	trans-1,3-Dichloropropene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2)	Toluene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2)	Total 1,3-Dichloropropene	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2	}	Total THM	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2)	Total xylenes	ND	ug/l	0.5	1
	07/20/06 08:48	326175	(ML/EPA 524.2)	Vinyl chloride (VC)	ND	ug/l	0.3	1
			(EPA 524.2)	Toluene-d8(70-130)	102	% Rec		
			(EPA 524.2)	1.2-Dichloroethane-d4(70-130)	115	% Rec		
			(EPA 524.2)	4-Bromofluorobenzene(70-130)	109	* Rec		

Laboratory QC Summary #179167

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc.

QC Ref #326175 - Regulated V	OCs plus Lists 1&3	Analysis Date: 07/20/2006
2607180168 2607180205	S200607-0615-JLRG TRAVEL BLANK-ANAL	-1 Analyzed by: rpd YZE Analyzed by: rpd
QC Ref #326849 - EDB and DBC	P by GC-ECD	Analysis Date: 07/22/2006
	- TRAVEL BLANK-ANAL	YZE Analyzed by: sal
QC Ref #326872 - Pesticides	by EPA 505	Analysis Date: 07/21/2006
2607180168	S200607-0615-JLRG	-1 Analyzed by: jrb
QC Ref #326940 - Herbicides	by 515.4	Analysis Date: 07/25/2006
2607180168	S200607-0615-JLRG	-1 Analyzed by: szz
QC Ref #327032 - EDB and DBC	P by GC-ECD	Analysis Date: 07/22/2006
2607180168	S200607-0615-JLRG	-1 Analyzed by: sal
QC Ref #327078 - Glyphosate		Analysis Date: 07/24/2006
2607180168	S200607-0615-JLRG	-1 Analyzed by: phk
QC Ref #327543 - Diquat and	Paraquat	Analysis Date: 07/26/2006
2607180168	S200607-0615-JLRG-	-1 Analyzed by: phk
QC Ref #327594 - Endothall		Analysis Date: 07/26/2006
2607180168	S200607-0615-JLRG-	-1 Analyzed by: crw

QC Summary - Page 1 of 2

Laboratory QC Summary #179167

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc. (continued)

QC Ref #327689 - 525 Semivolatiles by GC/MS Analysis Date: 07/25/2006

2607180168 S200607-0615-JLRG-1 Analyzed by: gwg

QC Ref #328540 - Aldicarbs by 531.2 Analysis Date: 07/28/2006

2607180168 S200607-0615-JLRG-1 Analyzed by: lhz

Sierra Environmental Monitoring, Inc.

QC Ref #326175

Regulated VOCs plus Lists 1&3

QC	Analyte	Spiked	Recovered	Units	Yield (%)	Limits (%) F	RPD (%)
LCS1	1,1,1,2-Tetrachloroethane	5	5.01	UGL	100.2	(70-130)	
LCS2	1,1,1,2-Tetrachloroethane	5	4.94	UGL	98.8	(70-130)	
MBLK	1,1,1,2-Tetrachloroethane	ND	<0.5	UGL			
RPD_LCS	1,1,1,2-Tetrachloroethane	100.200	98.800	UGL	1.4	(0-20)	
LCS1	1,1,1-Trichloroethane	5	5.22	UGL	104.4	(70-130)	
LCS2	1,1,1-Trichloroethane	5	5.31	UGL	106.2	(70-130)	
MBLK	1,1,1-Trichloroethane	ND	<0.5	UGL			
RPD_LCS	1,1,1-Trichloroethane	104.400	106.200	UGL	1.7	(0-20)	
LCS1	1,1,2,2-Tetrachloroethane	5	5.37	UGL	107.4	(70-130)	
LCS2	1,1,2,2-Tetrachloroethane	5	5.34	UGL	106.8	(70-130)	
MBLK	1,1,2,2-Tetrachloroethane	ND	<0.5	UGL			
RPD_LCS	1,1,2,2-Tetrachloroethane	107.400	106.800	UGL	0.6	(0-20)	
LCS1	1,1,2-Trichloroethane	5	4.74	UGL	94.8	(70-130)	
LCS2	1,1,2-Trichloroethane	5	4.88	UGL	97.6	(70-130)	
MBLK	1,1,2-Trichloroethane	ND	<0.5	UGL			
RPD_LCS	1,1,2-Trichloroethane	94.800	97.600	UGL	2.9	(0-20)	
LCS1	1,1-Dichloroethane	5	5.11	UGL	102.2	(70-130)	
LCS2	1,1-Dichloroethane	5	5.09	UGL	101.8	(70-130)	
MBLK	1,1-Dichloroethane	ND	<0.5	UGL			
RPD_LCS	1,1-Dichloroethane	102.200	101.800	UGL	0.4	(0-20)	
LCS1	1,1-Dichloroethylene	5	5.09	UGL	101.8	(70-130)	
LCS2	1,1-Dichloroethylene	5	5.22	UGL	104.4	(70-130)	
MBLK	1,1-Dichloroethylene	ND	<0.5	UGL			
RPD_LCS	1,1-Dichloroethylene	101.800	104.400	UGL	2.5	(0-20)	
LCS1	1,1-Dichloropropene	5	4.76	UGL	95.2	(70-130)	
LCS2	1,1-Dichloropropene	5	4.70	UGL	94.0	(70-130)	
MBLK	1,1-Dichloropropene	ND	<0.5	UGL			
RPD_LCS	1,1-Dichloropropene	95.200	94.000	UGL	1.3	(0-20)	
LCS1	1,2,3-Trichlorobenzene	5	5.04	UGL	100.8	(70-130)	
LCS2	1,2,3-Trichlorobenzene	5	4.88	UGL	97.6	(70-130)	
MBLK	1,2,3-Trichlorobenzene	ND	<0.5	UGL			
RPD_LCS	l,2,3-Trichlorobenzene	100.800	97.600	UGL	3.2	(0-20)	

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining</u>. Criteria for MS and DUP are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

Laboratory QC Report #179167

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc. (continued)

LCS1	1,2,3-Trichloropropane	5	5.59	UGL	111.8	(70-130)
LCS2	1,2,3-Trichloropropane	5	5.63	UGL	112.6	(70-130)
MBLK	1,2,3-Trichloropropane	ND	<0.5	UGL		
RPD_LCS	1,2,3-Trichloropropane	111.800	112.600	UGL	0.7	(0-20)
LCS1	1,2,4-Trichlorobenzene	5	4.86	UGL	97.2	(70-130)
LCS2	1,2,4-Trichlorobenzene	5	4.78	UGL	95.6	(70-130)
MBLK .	l,2,4-Trichlorobenzene	ND	<0.5	UGL		
RPD_LCS	1,2,4-Trichlorobenzene	97.200	95.600	UGL	1.7	(0-20)
LCS1	1,2,4-Trimethylbenzene	5	5.10	UGL	102.0	(70-130)
LCS2	1,2,4-Trimethylbenzene	5	5.04	UGL	100.8	(70-130)
MBLK	1,2,4-Trimethylbenzene	ND	<0.5	UGL		
RPD_LCS	1,2,4-Trimethylbenzene	102.000	100.800	UGL	1.2	(0-20)
LCS1	1,2-Dichloroethane	5	5.32	UGL	106.4	(70-130)
LCS2	1,2-Dichloroethane	5	5.49	UGL	109.8	(70-130)
MBLK	1,2-Dichloroethane	ND	<0.5	UGL		
RPD_LCS	1,2-Dichloroethane	106.400	109.800	UGL	3.1	(0-20)
LCS1	1,2-Dichloropropane	5	4.81	UGL	96.2	(70-130)
LCS2	1,2-Dichloropropane	5	4.74	UGL	94.8	(70-130)
MBLK	1,2-Dichloropropane	ND	<0.5	UGL		
RPD_LCS	1,2-Dichloropropane	96.200	94.800	UGL .	1.5	(0-20)
LCS1	1,3,5-Trimethylbenzene	5	5.22	UGL	104.4	(70-130)
LCS2	1,3,5-Trimethylbenzene	5	4.94	UGL	98.8	(70-130)
MBLK	1,3,5-Trimethylbenzene	ND	<0.5	UGL		
RPD_LCS	1,3,5-Trimethylbenzene	104.400	98.800	UGL	5.5	(0-20)
LCS1	1,3-Dichloropropane	5	4.99	UGL	99.8	(70-130)
LCS2	1,3-Dichloropropane	5	5.18	UGL	103.6	(70-130)
MBLK	1,3-Dichloropropane	ND	<0.5	UGL		
RPD_LCS	1,3-Dichloropropane	99.800	103.600	UGL	3.7	(0-20)
LCS1	p-Dichlorobenzene (1,4-DCB)	5	6.16	UGL	123.2	(70-130)
LCS2	p-Dichlorobenzene (1,4-DCB)	5	6.20	UGL	124.0	(70-130)
MBLK	p-Dichlorobenzene (1,4-DCB)	ND	<0.5	UGL		
RPD_LCS	p-Dichlorobenzene (1,4-DCB)	123.200	124.000	UGL	0.6	(0-20)
LCS1	2,2-Dichloropropane	5	4.81	UGL	96.2	(70-130)
LCS2	2,2-Dichloropropane	5	4.76	UGL	95.2	(70-130)
MBLK	2,2-Dichloropropane	ND	<0.5	UGL		

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc. (continued)

RPD_LCS	2,2-Dichloropropane	96.200	95.200	UGL	1.0	(0-20)
LCS1	2-Butanone (MEK)	50	47.3	UGL	94.6	(70-130)
LCS2	2-Butanone (MEK)	50	46.6	UGL	93.2	(70-130)
MBLK	2-Butanone (MEK)	ND	<5.0	UGL		
RPD_LCS	2-Butanone (MEK)	94.600	93.200	UGL	1.5	(0-20)
LCS1	o-Chlorotoluene	5	6.12	UGL	122.4	(70-130)
LCS2	o-Chlorotoluene	5	5.78	UGL	115.6	(70-130)
MBLK	o-Chlorotoluene	ND	<0.5	UGL		
RPD_LCS	o-Chlorotoluene	122.400	115.600	UGL	5.7	(0-20)
LCS1	p-Chlorotoluene	5	5.72	UGL	114.4	(70-130)
LCS2	p-Chlorotoluene	5	5.81	UGL	116.2	(70-130)
MBLK	p-Chlorotoluene	ND	<0.5	UGL		
RPD_LCS	p-Chlorotoluene	114.400	116.200	UGL	1.6	(0-20)
LCS1	4-Methyl-2-Pentanone (MIBK)	50	46.4	UGL	92.8	(70-130)
LCS2	4-Methyl-2-Pentanone (MIBK)	50	46.6	UGL	93.2	(70-130)
MBLK	4-Methyl-2-Pentanone (MIBK)	ND	<5.0	UGL		
RPD_LCS	4-Methyl-2-Pentanone (MIBK)	92.800	93.200	UGL	0.4	(0-20)
LCS1	Benzene	5	5.11	UGL	102.2	(70-130)
LCS2	Benzene	5	4.93	UGL	98.6	(70-130)
MBLK	Benzene	ND	<0.5	UGL		
RPD_LCS	Benzene	102.200	98.600	UGL	3.6	(0-20)
LCS1	Bromobenzene	5 .	6.34	UGL	126.8	(70-130)
LCS2	Bromobenzene	5	6.21	UGL	124.2	(70-130)
MBLK	Bromobenzene	ND	<0.5	UGL		
RPD_LCS	Bromobenzene	126.800	124.200	UGL	2.1	(0-20)
LCS1	Bromomethane (Methyl Bromide)	5	5.17	UGL	103.4	(70-130)
LCS2	Bromomethane (Methyl Bromide)	5	5.13	UGL	102.6	(70-130)
MBLK	Bromomethane (Methyl Bromide)	ND	<0.5	UGL		
RPD_LCS	Bromomethane (Methyl Bromide)	103.400	102.600	UGL	0.8	(0-20)
LCS1	cis-1,2-Dichloroethylene	5	4.83	UGL	96.6	(70-130)
LCS2	cis-1,2-Dichloroethylene	5	4.91	UGL	98.2	(70-130)
MBLK	cis-1,2-Dichloroethylene	ND	<0.5	UGL		
RPD_LCS	cis-1,2-Dichloroethylene	96.600	98.200	UGL	1.6	(0-20)
LCS1	Chlorobenzene	5	5.15	UGL	103.0	(70-130)
LCS2	Chlorobenzene	5	5.13	UGL	102.6	(70-130)

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc. (continued)

MBLK	Chlorobenzene	ND	<0.5	UGL		
RPD LCS	Chlorobenzene	103.000	102.600	UGL	0.4	(0-20)
LCS1	Carbon Tetrachloride	5	5.24	UGL	104.8	(70-130)
LCS2	Carbon Tetrachloride	5	5.35	UGL	101.0	(70-130)
MBLK	Carbon Tetrachloride	ND	<0.5	UGL	10710	(/0 100)
RPD LCS	Carbon Tetrachloride	104.800	107.000	UGL	2.1	(0-20)
LCS1	-cis-1,3-Dichloropropene	5	4.14	UGL	82.8	(70-130)
LCS2	cis-1,3-Dichloropropene	5	4.31	UGL	86.2	(70-130)
MBLK	cis-1,3-Dichloropropene	ND	<0.5	UGL		()0 100)
RPD_LCS	cis-1,3-Dichloropropene	82.800	86.200	UGL	4.0	(0-20)
LCS1	Bromoform	5	5.44	UGL	108.8	(70-130)
LCS2	Bromoform	5	5.64	UGL	112.8	(70-130)
MBLK	Bromoform	ND	<0.5	UGL		
RPD_LCS	Bromoform	108.800	112.800	UGL	3.6	(0-20)
LCS1	Chloroform (Trichloromethane)	5	5.11	UGL	102.2	(70-130)
LCS2	Chloroform (Trichloromethane)	5	5.26	UGL	105.2	(70-130)
MBLK	Chloroform (Trichloromethane)	ND	<0.5	UGL		
RPD_LCS	Chloroform (Trichloromethane)	102.200	105.200	UGL	2.9	(0-20)
LCS1	Bromochloromethane	5	5.49	UGL	109.8	(70-130)
LCS2	Bromochloromethane	5	5.63	UGL	112.6	(70-130)
MBLK	Bromochloromethane	ND	<0.5	UGL		
RPD_LCS	Bromochloromethane	109.800	112.600	UGL	2.5	(0-20)
LCS1	Chloroethane	5	4.65	UGL	93.0	(70-130)
LCS2	Chloroethane	5	4.62	UGL	92.4	(70-130)
MBLK	Chloroethane	ND	<0.5	UGL		
RPD_LCS	Chloroethane	93.000	92.400	UGL	0.6	(0-20)
LCS1	Chloromethane (Methyl Chloride)	5	4.87	UGL	97.4	(70-130)
LCS2	Chloromethane(Methyl Chloride)	5	4.95	UGL	99.0	(70-130)
MBLK	Chloromethane(Methyl Chloride)	ND	<0.5	UGL		
RPD_LCS	Chloromethane(Methyl Chloride)	97.400	99.000	UGL	1.6	(0-20)
LCS1	Chlorodibromomethane	5	4.90	UGL	98.0	(70-130)
LCS2	Chlorodibromomethane	5	5.01	UGL	100.2	(70-130)
MBLK	Chlorodibromomethane	ND	<0.5	UGL		
RPD_LCS	Chlorodibromomethane	98.000	100.200	UGL	2.2	(0-20)
LCS1	Dibromomethane	5	5.01	UGL	100.2	(70-130)

Sierra Environmental Monitoring, Inc. (continued)

LCS2	Dibromomethane	5	5.38	UGL	107.6	(70-130)
MBLK	Dibromomethane	ND	<0.5	UGL		
RPD_LCS	Dibromomethane	100.200	107.600	UGL	7.1	(0-20)
LCS1	Bromodichloromethane	5	4.71	UGL	94.2	(70-130)
LCS2	Bromodichloromethane	5	4.77	UGL	95.4	(70-130)
MBLK	Bromodichloromethane	ND	<0.5	UGL		
RPD_LCS-	Bromodichloromethane	94.200	95.400	UGL	1.3	(0-20)
LC\$1	Dichloromethane	5	5.02	UGL	100.4	(70-130)
LCS2	Dichloromethane	5	5.16	UGL	103.2	(70-130)
MBLK	Dichloromethane	ND	<0.5	UGL		
RPD_LCS	Dichloromethane	100.400	103.200	UGL	2.8	(0-20)
LCS1	Di-isopropyl ether	5	4.44	UGL	88.8	(70-130)
LCS2	Di-isopropyl ether	5	4.51	UGL	90.2	(70-130)
MBLK	Di-isopropyl ether	ND	<3.0	UGL		
RPD_LCS	Di-isopropyl ether	88.800	90.200	UGL	1.6	(0-20)
LCS1	Ethyl benzene	5	4.76	UGL	95.2	(70-130)
LCS2	Ethyl benzene	5	4.78	UGL	95.6	(70-130)
MBLK	Ethyl benzene	ND	<0.5	UGL		
RPD_LCS	Ethyl benzene	95.200	95.600	UGL	0.4	(0-20)
LCS1	Dichlorodifluoromethane	5	5.09	UGL	101.8	(70-130)
LCS2	Dichlorodifluoromethane	5	5.07	UGL	101.4	(70-130)
MBLK	Dichlorodifluoromethane	ND	<0.5	UGL		
RPD_LCS	Dichlorodifluoromethane	101.800	101.400	UGL	0.4	(0-20)
LCS1	Fluorotrichloromethane-Freon11	5	5.59	UGL	111.8	(70-130)
LCS2	Fluorotrichloromethane-Freonl1	5	5.58	UGL	111.6	(70-130)
MBLK	Fluorotrichloromethane-Freonl1	ND	<0.5	UGL		
RPD_LCS	Fluorotrichloromethane-Freon11	111.800	111.600	UGL	0.2	(0-20)
LCS1	Hexachlorobutadiene	5	5.59	UGL	111.8	(70-130)
LCS2	Hexachlorobutadiene	5	5.40	UGL	108.0	(70-130)
MBLK	Hexachlorobutadiene	ND	<0.5	UGL		
RPD_LCS	Hexachlorobutadiene	111.800	108.000	UGL	3.5	(0-20)
LCS1	Isopropylbenzene	5	5.42	UGL	108.4	(70-130)
LCS2	Isopropylbenzene	5	5.35	UGL	107.0	(70-130)
MBLK	Isopropylbenzene	ND	<0.5	UGL		
RPD_LCS	Isopropylbenzene	108.400	107.000	UGL	1.3	(0-20)

Sierra Environmental Monitoring, Inc. (continued)

LCS1	m-Dichlorobenzene (1,3-DCB)	5	6.19	UGL	123.8	(70-130)
LCS2	m-Dichlorobenzene (1,3-DCB)	5	6.15	UGL	123.0	(70-130)
MBLK	m-Dichlorobenzene (1,3-DCB)	ND	<0.5	UGL		
RPD_LCS	m-Dichlorobenzene (1,3-DCB)	123.800	123.000	UGL	0.6	(0-20)
LCS1	m,p-Xylenes	10	10.1	UGL	101.0	(70-130)
LCS2	m,p-Xylenes	10	10.2	UGL	102.0	(70-130)
MBLK .	m,p-Xylenes	ND	<0.5	UGL		
RPD_LCS	m,p-Xylenes	101.000	102.000	UGL	1.0	(0-20)
LCS1	Methyl Tert-butyl ether (MTBE)	5	4.47	UGL	89.4	(70-130)
LCS2	Methyl Tert-butyl ether (MTBE)	5	4.61	UGL	92.2	(70-130)
MBLK	Methyl Tert-butyl ether (MTBE)	ND	<0.5	UGL		
RPD_LCS	Methyl Tert-butyl ether (MTBE)	89.400	92.200	UGL	3.1	(0-20)
LCS1	Naphthalene	5	4.39	UGL	87.8	(70-130)
LCS2	Naphthalene	5	4.31	UGL	86.2	(70-130)
MBLK	Naphthalene	ND	<0.5	UGL		
RPD_LCS	Naphthalene	87.800	86.200	UGL	1.8	(0-20)
LCS1	n-Butylbenzene	5	4.07	UGL	81.4	(70-130)
LCS2	n-Butylbenzene	5	4.11	UGL	82.2	(70-130)
MBLK	n-Butylbenzene	ND	<0.5	UGL		
RPD_LCS	n-Butylbenzene	81.400	82.200	UGL	1.0	(0-20)
LCS1	n-Propylbenzene	5	5.49	UGL	109.8	(70-130)
LCS2	n-Propylbenzene	5	5.33	UGL	106.6	(70-130)
MBLK	n-Propylbenzene	ND	<0.5	UGL		
RPD_LCS	n-Propylbenzene	109.800	106.600	UGL	3.0	(0-20)
LCS1	o-Xylene	5	4.69	UGL	93.8	(70-130)
LCS2	o-Xylene	5	4.83	UGL	96.6	(70-130)
MBLK	o-Xylene	ND	<0.5	UGL		
RPD_LCS	o-Xylene	93.800	96.600	UGL	2.9	(0-20)
LCS1	o-Dichlorobenzene (1,2-DCB)	5	5.13	UGL	102.6	(70-130)
LCS2	o-Dichlorobenzene (1,2-DCB)	5	5.27	UGL	105.4	(70-130)
MBLK	o-Dichlorobenzene (1,2-DCB)	ND	<0.5	UGL		
RPD_LCS	o-Dichlorobenzene (1,2-DCB)	102.600	105.400	UGL	2.7	(0-20)
LCS1	Tetrachloroethylene (PCE)	5	6.00	UGL	120.0	(70-130)
LCS2	Tetrachloroethylene (PCE)	5	5.99	UGL	119.8	(70-130)
MBLK	Tetrachloroethylene (PCE)	ND	<0.5	UGL		

Sierra Environmental Monitoring, Inc. (continued)

RPD_LCS	Tetrachloroethylene (PCE)	120.000	119.800	UGL	0.2	(0-20)
LCS1	p-Isopropyltoluene	5	4.91	UGL	98.2	(70-130)
LCS2	p-Isopropyltoluene	5	4.81	UGL	96.2	(70-130)
MBLK	p-Isopropyltoluene	ND	<0.5	UGL		
RPD_LCS	p-Isopropyltoluene	98.200	96.200	UGL	2.1	(0-20)
LCS1	sec-Butylbenzene	5	5.10	UGL	102.0	(70-130)
LCS2	sec-Butylbenzene	5	5.11	UGL	102.2	(70-130)
MBLK	sec-Butylbenzene	ND	<0.5	UGL		
RPD_LCS	sec-Butylbenzene	102.000	102.200	UGL	0.2	(0-20)
LCS1	Styrene	5	4.31	UGL	86.2	(70-130)
LCS2	Styrene	5	4.32	UGL	86.4	(70-130)
MBLK	Styrene	ND	<0.5	UGL		
RPD_LCS	Styrene	86.200	86.400	UGL	0.2	(0-20)
LCS1	trans-1,2-Dichloroethylene	5	5.24	UGL	104.8	(70-130)
LCS2	trans-1,2-Dichloroethylene	5	5.40	UGL	108.0	(70-130)
MBLK	trans-1,2-Dichloroethylene	ND	<0.5	UGL		
RPD_LCS	trans-1,2-Dichloroethylene	104.800	108.000	UGL	3.0	(0-20)
LCS1	tert-amyl Methyl Ether	5	4.34	UGL	86.8	(70-130)
LCS2	tert-amyl Methyl Ether	5	4.51	UGL	90.2	(70-130)
MBLK	tert-amyl Methyl Ether	ND	<3.0	UGL		
RPD_LCS	tert-amyl Methyl Ether	86.800	90.200	UGL	3.8	(0-20)
LCS1	tert-Butyl Ethyl Ether	5	4.21	UGL	84.2	(70-130)
LCS2	tert-Butyl Ethyl Ether	5	4.31	UGL	86.2	(70-130)
MBLK	tert-Butyl Ethyl Ether	ND	<3.0	UGL		
RPD_LCS	tert-Butyl Ethyl Ether	84.200	86.200	UGL	2.3	(0-20)
LCS1	tert-Butylbenzene	5	5.17	UGL	103.4	(70-130)
LCS2	tert-Butylbenzene	5	4.91	UGL	98.2	(70-130)
MBLK	tert-Butylbenzene	ND	<0.5	UGL		
RPD_LCS	tert-Butylbenzene	103.400	98.200	UGL	5.2	(0-20)
LCS1	Trichloroethylene (TCE)	5	5.62	UGL	112.4	(70-130)
LCS2	Trichloroethylene (TCE)	5	5.63	UGL	112.6	(70-130)
MBLK	Trichloroethylene (TCE)	ND	<0.5	UGL		
RPD_LCS	Trichloroethylene (TCE)	112.400	112.600	UGL	0.2	(0-20)
LCS1	Trichlorotrifluoroethane(Freon	5	5.22	UGL	104.4	(70-130)
LCS2	Trichlorotrifluoroethane(Freon	5	5.13	UGL	102.6	(70-130)

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc. (continued)

MBLK	Trichlorotrifluoroethane(Freon	ND	<0.5	UGL		
RPD_LCS	Trichlorotrifluoroethane(Freon	104.400	102.600	UGL	1.7	(0-20)
LCS1	trans-1,3-Dichloropropene	5	4.14	UGL	82.8	(70-130)
LCS2	trans-1,3-Dichloropropene	5	4.23	UGL	84.6	(70-130)
MBLK	trans-1,3-Dichloropropene	ND	<0.5	UGL		
RPD_LCS	trans-1,3-Dichloropropene	82.800	84.600	UGL	2.2	(0-20)
LCS1	Toluene	5	5.00	UGL	100.0	(70-130)
LCS2	Toluene	5	5.03	UGL	100.6	(70-130)
MBLK	Toluene	ND	<0.5	UGL		
RPD_LCS	Toluene	100.000	100.600	UGL	0.6	(0-20)
LCS1	Vinyl chloride (VC)	5	4.71	UGL	94.2	(70-130)
LCS2	Vinyl chloride (VC)	5	4.70	UGL	94.0	(70-130)
MBLK	Vinyl chloride (VC)	ND	<0.3	UGL		
RPD_LCS	Vinyl chloride (VC)	94.200	94.000	UGL	0.2	(0-20)

QC Ref #326849

EDB and DBCP by GC-ECD

QC	Analyte	Spiked	Recovered	Units	Yield (%)	Limits (%) RPD (%)
MS	Spiked sample	Lab # 26	07180273	NONE		(0-0)
LCS1	Dibromochloropropane (DBCP)	0.01	0.0116	UGL	116.0	(70-130)
LCS2	Dibromochloropropane (DBCP)	0.25	0.271	UGL	108.4	(70-130)
MBLK	Dibromochloropropane (DBCP)	ND	<0.01	UGL		
MS	Dibromochloropropane (DBCP)	0.25	0.239	UGL	95.6	(65-135)
MSD	Dibromochloropropane (DBCP)	0.25	0.258	UGL	103.2	(65-135)
RPD_MS	Dibromochloropropane (DBCP)	95.600	103.200	UGL	7.6	(0-20)
LCS1	Ethylene Dibromide (EDB)	0.01	0.0128	UGL	128.0	(70-130)
LCS2	Ethylene Dibromide (EDB)	0.25	0.248	UGL	99.2	(70-130)
MBLK	Ethylene Dibromide (EDB)	ND	<0.01	UGL		
MS	Ethylene Dibromide (EDB)	0.25	0.232	UGL	92.8	(65-135)
MSD	Ethylene Dibromide (EDB)	0.25	0.234	UGL	93.6	(65-135)
RPD_MS	Ethylene Dibromide (EDB)	92.800	93.600	UGL	0.9	(0-20)
LCS1	1,2-dibromopropane (surr)	100	114	%R	114.0	(74-149)
LCS2	1,2-dibromopropane (surr)	100	107	%R	107.0	(74-149)
MBLK	1,2-dibromopropane (surr)	100	101	%R	101.0	

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc. (continued)

MS	1,2-dibromopropane (surr)	100	106	%R	106.0	(60-140)
MSD	1,2-dibromopropane (surr)	100	113	₽R	113.0	(60-140)
RPD_MS	1,2-dibromopropane (surr)	106.000	113.000	₽R	6.4	(0-20)

QC Ref #326872

Pesticides by EPA 505

QC	Analyte	Spiked	Recovered	Units	Yield (%)	Limits (%) RPD (%)
LCS2	PCB 1242 Aroclor	0.5	0.512	UGL	102.4	(70-130)
MBLK	PCB 1242 Aroclor	ND	<0.1	UGL		
MRL_CHK	PCB 1242 Aroclor	0.100	0.117	UGL	117.0	(50-150)
MS	PCB 1242 Aroclor	0.5	0.389	UGL	77.8	(65-135)
MS	Spiked sample	Lab # 26	07180168	NONE		(0-0)
LCS2	Alachlor (Alanex)	1.0	0.879	UGL	87.9	(70-130)
MBLK	Alachlor (Alanex)	ND	<0.1	UGL		
MRL_CHK	Alachlor (Alanex)	0.100	0.124	UGL	124.0	(50-150)
MS	Alachlor (Alanex)	0.2	0.202	UGL	101.0	(65-135)
LCS2	Aldrin	0.10	0.088	UGL	88.0	(70-130)
MBLK	Aldrin	ND	<0.01	UGL		
MRL_CHK	Aldrin	0.010	0.011	UGL	110.0	(50-150)
MS	Aldrin	0.02	0.015	UGL	75.0	(65-135)
LCS2	Dieldrin	0.10	0.100	UGL	100.0	(70-130)
MBLK	Dieldrin	ND	<0.01	UGL		
MRL_CHK	Dieldrin	0.010	0.009	UGL	90.0	(50-150)
MS	Dieldrin	0.02	0.021	UGL	105.0	(65-135)
LCS2	Endrin	0.10	0.085	UGL	85.0	(70-130)
MBLK	Endrin	ND	<0.01	UGL		
MRL_CHK	Endrin	0.010	0.010	UGL	100.0	(50-150)
MS	Endrin	0.02	0.018	UGL	90.0	(65-135)
LCS2	Heptachlor	0.10	0.093	UGL	93.0	(70-130)
MBLK	Heptachlor	ND	<0.01	UGL		
MRL_CHK	Heptachlor	0.010	0.013	UGL	130.0	(50-150)
MS	Heptachlor	0.02	0.016	UGL	80.0	(65-135)
LCS2	Heptachlor Epoxide	0.10	0.098	UGL	98.0	(70-130)
MBLK	Heptachlor Epoxide	ND	<0.01	UGL		

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc. (continued)

MRL_CHK	Heptachlor Epoxide	0.010	0.008	UGL	80.0	(50-150)
MS	Heptachlor Epoxide	0.02	0.019	UGL	95.0	(65-135)
LCS2	Lindane (gamma-BHC)	0.10	0.085	UGL	85.0	(70-130)
MBLK	Lindane (gamma-BHC)	ND	<0.01	UGL		
MRL_CHK	Lindane (gamma-BHC)	0.010	0.008	UGL	80.0	(50-150)
MS	Lindane (gamma-BHC)	0.02	0.016	UGL	80.0	(65-135)
LCS2	Methoxychlor	0.50	0.316	UGL	63.2	(70-130)
MBLK	Methoxychlor	ND	<0.05	UGL		
MRL_CHK	Methoxychlor	0.050	0.037	UGL	74.0	(50-150)
MS	Methoxychlor	0.10	0.034	UGL	34.0	(65-135)

QC Ref #326940

Herbicides by 515.4

QC	Analyte	Spiked	Recovered	Units	Yield (%)	Limits (%) RPD (%)
CCCH	2,4,5-T	4.0	4.00	UGL	100.0	(70-130)
LCS2	2,4,5-T	3.0	2.80	UGL	93.3	(70-130)
MBLK	2,4,5-T	ND	<0.2	UGL		
MRL_CHK	2,4,5-T	0.200	0.223	UGL	111.5	(50-150)
MS	2,4,5-T	3.0	3.11	UGL	103.7	(70-130)
MSD	2,4,5-T	3.0	3.12	UGL	104.0	(70-130)
RPD_LCS	2,4,5-T		93.333	UGL		(0-20)
RPD_MS	2,4,5-T	103.667	104.000	UGL	0.3	(0-20)
CCCH	2,4,5-TP (Silvex)	4.0	4.01	UGL	100.2	(70-130)
LCS2	2,4,5-TP (Silvex)	3.0	2.89	UGL	96.3	(70-130)
MBLK	2,4,5-TP (Silvex)	ND	<0.2	UGL		
MRL_CHK	2,4,5-TP (Silvex)	0.200	0.214	UGL	107.0	(50-150)
MS	2,4,5-TP (Silvex)	3.0	2.98	UGL	99.3	(70-130)
MSD	2,4,5-TP (Silvex)	3.0	2.98	UGL	99.3	(70-130)
RPD_LCS	2,4,5-TP (Silvex)		96.333	UGL		(0-20)
RPD_MS	2,4,5-TP (Silvex)	99.333	99.333	UGL	0.0	(0-20)
CCCH	2,4-D	2.0	2.00	UGL	100.0	(70-130)
LCS2	2,4-D	1.5	1.57	UGL	104.7	(70-130)
MBLK	2,4-D	ND	<0.1	UGL		
MRL_CHK	2,4-D	0.100	0.0903	UGL	90.3	(50-150)

Sierra Environmental Monitoring, Inc. (continued)

MS	2,4-D	1.50	1.41	UGL	94.0	(70-130)
MSD	2,4-D	1.50	1.28	UGL	85.3	(70-130)
RPD_LCS	2,4-D		104.667	UGL		(0-20)
RPD_MS	2,4-D	94.000	85.333	UGL	9.7	(0-20)
CCCH	2,4-DB	40.0	37.7	UGL	94.3	(70-130)
LCS2	2,4-DB	30.0	23.0	UGL	76.7	(70-130)
MBLK	2,4-DB	ND	<2.0	UGL		
MRL_CHK	2,4-DB	2.000	2.31	UGL	115.5	(50-150)
MS	2,4-DB	30.0	29.0	UGL	96.7	(70-130)
MSD	2,4-DB	30.0	29.0	UGL	96.7	(70-130)
RPD_LCS	2,4-DB		76.667	UGL		(0-20)
RPD_MS	2,4-DB	96.667	96-667	UGL	0.0	(0-20)
CCCH	Dichlorprop	10.0	9.84	UGL	98.4	(70-130)
LCS2	Dichlorprop	7.5	7.62	UGL	101.6	(70-130)
MBLK	Dichlorprop	ND	<0.5	UGL		
MRL_CHK	Dichlorprop	0.500	0.598	UGL	119.6	(50-150)
MS	Dichlorprop	7.50	7.37	UGL	98.3	(70-130)
MSD	Dichlorprop	7.50	7.53	UGL	100.4	(70-130)
RPD_LCS	Dichlorprop		101.600	UGL		(0-20)
RPD_MS	Dichlorprop	98.267	100.400	UGL	2.1	(0-20)
MS	Spiked sample	Lab # 26	07170169	NONE		(0-0)
CCCH	Acifluorfen	4.0	3.91	UGL	97.8	(70-130)
LCS2	Acifluorfen	3.0	2.86	UGL	95.3	(70-130)
MBLK	Acifluorfen	ND	<0.2	UGL		
MRL_CHK	Acifluorfen	0.200	0.210	UGL	105.0	(50-150)
MS ·	Acifluorfen	3.0	2.90	UGL	96.7	(70-130)
MSD	Acifluorfen	3.0	2.92	UGL	97.3	(70-130)
RPD_LCS	Acifluorfen		95.333	UGL		(0-20)
RPD_MS	Acifluorfen	96.667	97.333	UGL	0.7	(0-20)
CCCH	Bentazon	10.0	9.82	UGL	98.2	(70-130)
LCS2	Bentazon	7.5	5.47	UGL	72.9	(70-130)
MBLK	Bentazon	ND	<0.5	UGL		
MRL_CHK	Bentazon	0.500	0.506	UGL	101.2	(50-150)
MS	Bentazon	7.50	6.98	UGL	93.1	(70-130)
MSD	Bentazon	7.50	6.99	UGL	93.2	(70-130)

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining</u>. Criteria for MS and DUP are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

Laboratory QC Report #179167

Sierra Environmental Monitoring, Inc. (continued)

RPD_LCS	Bentazon		72.933	UGL		(0-20)
RPD_MS	Bentazon	93.067	93.200	UGL	0.1	(0-20)
CCCH	Dalapon	20.0	19.7	UGL	98.5	(70-130)
LCS2	Dalapon	15.0	14.2	UGL	94.7	(70-130)
MBLK	Dalapon	ND	<1.0	UGL		
MRL_CHK	Dalapon	1.000	1.14	UGL	114.0	(50-150)
MS	Dalapon	15.0	13.4	UGL	89.3	(70-130)
MSD	Dalapon	15.0	13.5	UGL	90.0	(70-130)
RPD_LCS	Dalapon		94.667	UGL		(0-20)
RPD_MS	Dalapon	89.333	90.000	UGL	0.7	(0-20)
CCCH	3,5-Dichlorobenzoic acid	10.0	9.86	UGL	98.6	(70-130)
LCS2	3,5-Dichlorobenzoic acid	7.5	7.50	UGL	100.0	(70-130)
MBLK	3,5-Dichlorobenzoic acid	ND	<0.5	UGL		
MRL_CHK	3,5-Dichlorobenzoic acid	0.500	0.551	UGL	110.2	(50-150)
MS	3,5-Dichlorobenzoic acid	7.50	7.26	UGL	96.8	(70-130)
MSD	3,5-Dichlorobenzoic acid	7.50	7.13	UGL	95.1	(70-130)
RPD_LCS	3,5-Dichlorobenzoic acid		100.000	UGL		(0-20)
RPD_MS	3,5-Dichlorobenzoic acid	96.800	95.067	UGL	1.8	(0-20)
CCCH	Tot DCPA Mono&Diacid Degradate	2.0	1.97	UGL	98.5	(70-130)
LCS2	Tot DCPA Mono&Diacid Degradate	3.0	2.20	UGL	73.3	(70-130)
MBLK	Tot DCPA Mono&Diacid Degradate	ND	<1.0	UGL		
MRL_CHK	Tot DCPA Mono&Diacid Degradate	0.100	0.103	UGL	103.0	(50-150)
MS	Tot DCPA Mono&Diacid Degradate	1.50	1.60	UGL	106.7	(70-130)
MSD	Tot DCPA Mono&Diacid Degradate	1.50	1.61	UGL	107.3	(70-130)
RPD_LCS	Tot DCPA Mono&Diacid Degradate		73.333	UGL		(0-20)
RPD_MS	Tot DCPA Mono&Diacid Degradate	106.667	107.333	UGL	0.6	(0-20)
CCCH	Dicamba	1.0	0.999	UGL	99.9	(70-130)
LCS2	Dicamba	0.75	0.795	UGL	106.0	(70-130)
MBLK	Dicamba	ND	<0.08	UGL		
MRL_CHK	Dicamba	0.050	0.0567	UGL	113.4	(50-150)
MS	Dicamba	0.75	0.801	UGL	106.8	(70-130)
MSD	Dicamba	0.75	0.812	UGL	108.3	(70-130)
RPD_LCS	Dicamba		106.000	UGL		(0-20)
RPD_MS	Dicamba	106.800	108.267	UGL	1.4	(0-20)
CCCH	Dinoseb	4.0	3.89	UGL	97.2	(70-130)

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining</u>. Criteria for MS and DUP are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

Laboratory QC Report #179167

Sierra Environmental Monitoring, Inc. (continued)

LCS2	Dinoseb	3.0	2.73	UGL	91.0	(70-130)
MBLK	Dinoseb	ND	<0.2	UGL		
MRL_CHK	Dinoseb	0.200	0.288	UGL	144.0	(50-150)
MS	Dinoseb	3.0	2.79	UGL	93.0	(70-130)
MSD	Dinoseb	3.0	2.79	UGL	93.0	(70-130)
RPD_LCS	Dinoseb		91.000	UGL		(0-20)
RPD_MS	Dinoseb	93.000	93.000	UGL	0.0	(0-20)
CCCH	Pentachlorophenol	0.8	0.803	UGL	100.4	(70-130)
LCS2	Pentachlorophenol	0.60	0.590	UGL	98.3	(70-130)
MBLK	Pentachlorophenol	ND	<0.04	UGL		
MRL_CHK	Pentachlorophenol	0.040	0.0507	UGL	126.8	(50-150)
MS	Pentachlorophenol	0.60	0.546	UGL	91.0	(70-130)
MSD	Pentachlorophenol	0.60	0.552	UGL	92.0	(70-130)
RPD_LCS	Pentachlorophenol		98.333	UGL		(0-20)
RPD_MS	Pentachlorophenol	91.000	92.000	UGL	1.1	(0-20)
CCCH	Picloram	2.0	1.94	UGL	97.0	(70-130)
LCS2	Picloram	1.5	1.42	UGL	94.7	(70-130)
MBLK	Picloram	ND	<0.1	UGL		
MRL_CHK	Picloram	0.100	0.122	UGL	122.0	(50-150)
MS	Picloram	1.50	1.77	UGL	118.0	(70-130)
MSD	Picloram	1.50	1.68	UGL	112.0	(70-130)
RPD_LCS	Picloram		94.667	UGL		(0-20)
RPD_MS	Picloram	118.000	112.000	UGL	5.2	(0-20)
CCCH	2,4-Dichlorophenylacetic acid	100	102	۶R	102.0	(70-130)
LCS2	2,4-Dichlorophenylacetic acid	100	84	%R	84.0	(70-130)
MBLK	2,4-Dichlorophenylacetic acid	100	100	₽R	100.0	
MRL_CHK	2,4-Dichlorophenylacetic acid	100	101	۶R	101.0	(70-130)
MS	2,4-Dichlorophenylacetic acid	100	98	۴R	98.0	(70-130)
MSD	2,4-Dichlorophenylacetic acid	100	101	₽R	101.0	(70-130)
RPD_LCS	2,4-Dichlorophenylacetic acid		84.000	۴R		(0-20)
RPD_MS	2,4-Dichlorophenylacetic acid	98.000	101.000	۴R	3.0	(0-20)
CCCH	4,4'-Dibromooctafluorobiphenyl	100	100	%R	100.0	(50-150)
LCS2	4,4'-Dibromooctafluorobiphenyl	100	101	₿R	101.0	(70-130)
MBLK	4,4'-Dibromooctafluorobiphenyl	100	98	%R	98.0	
MRL_CHK	4,4'-Dibromooctafluorobiphenyl	100	101	%R	101.0	(50-150)

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc. (continued)

MS	4,4'-Dibromooctafluorobiphenyl	100	100	%R	100.0	(50-150)
MSD	4,4'-Dibromooctafluorobiphenyl	100	98	₽R	98.0	(50-150)
RPD_LCS	4,4'-Dibromooctafluorobiphenyl		101.000	%R		(0-20)
RPD_MS	4,4'-Dibromooctafluorobiphenyl	100.000	98.000	۶R	2.0	(0-20)

QC Ref #327032

EDB and DBCP by GC-ECD

QC	Analyte	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPD (%)
DUP	-	-			11610 (9)	,	KPD (a)
D05	Spiked sample	Lab # 26	07180095	NONE		(0-0)	
MS	Spiked sample	Lab # 26	07180094	NONE		(0-0)	
DUP	Dibromochloropropane (DBCP)	ND	ND	UGL		(0-20)	
LCS1	Dibromochloropropane (DBCP)	0.01	0.0119	UGL	119.0	(70-130)	
LCS2	Dibromochloropropane (DBCP)	0.25	0.252	UGL	100.8	(70-130)	
MBLK	Dibromochloropropane (DBCP)	ND	<0.01	UGL			
MS	Dibromochloropropane (DBCP)	0.25	0.253	UGL	101.2	(65-135)	
DUP	Ethylene Dibromide (EDB)	ND	ND	UGL		(0-20)	(, , , ,)
LCS1	Ethylene Dibromide (EDB)	0.01	0.0133	UGL	133.0	(-70-130-)	(D-150%) 4- 8/14/01
LCS2	Ethylene Dibromide (EDB)	0.25	0.248	UGL	99.2	(70-130)	4-8/14/01
MBLK	Ethylene Dibromide (EDB)	ND	<0.01	UGL			
MS	Ethylene Dibromide (EDB)	0.25	0.249	UGL	99.6	(65-135)	
DUP	1,2-dibromopropane (surr)	100	107	%R	107.0	(60-140)	
LCS1	1,2-dibromopropane (surr)	100	122	%R	122.0	(74-149)	
LCS2	1,2-dibromopropane (surr)	100	110	%R	110.0	(74-149)	
MBLK	1,2-dibromopropane (surr)	100	101	%R	101.0		
MS	1,2-dibromopropane (surr)	100	97	%R	97.0	(60-140)	

QC Ref #327078

Glyphosate

QC	Analyte	Spiked	Recovered	Units	Yield (%)	Limits (%)	RPD (%)
MS	Spiked sample	Lab # 26	07180262	UGL		(0-0)	
LCS1	Glyphosate	10	10.7	UGL	107.0	(80-117)	
MBLK	Glyphosate	ND	<6.0	UGL			
MRL_CHK	Glyphosate	6.00	6.49	UGL	108.2	(50-150)	

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 I 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc. (continued)

MS	Glyphosate	10	10.6	UGL	106.0	(80-117)
MSD	Glyphosate	10	10.9	UGL	109.0	(80-117)
RPD_MS	Glyphosate	106.000	109.000	UGL	2.8	(0-20)

QC Ref #327543

Diquat and Paraquat

QC .	Analyte	Spiked	Recovered	Units	Yield (%)	Limits (%) RPD (%)
MS_2ND	Spiked sample	Lab # 26	07180280	NONE		(0-0)
MS	Spiked sample	Lab # 26	07180168	NONE		(0-0)
LCS1	Diquat	5.0	4.57	UGL	91.4	(70-130)
MBLK	Diquat	ND	<0.4	UGL		
MRL_CHK	Diquat	0.400	0.41	UGL	102.5	(50-150)
MS	Diquat	5.0	4.86	UGL	97.2	(70-130)
MSD	Diquat	5.0	4.72	UGL	94.4	(70-130)
MS_2ND	Diquat	5.0	4.56	UGL	91.2	(70-130)
RPD_MS	Diquat	97.200	94.400	UGL	2.9	(0-20)
LCS1	Paraquat	5.0	4.07	UGL	81.4	(70-130)
MBLK	Paraquat	ND	<2.0	UGL		
MRL_CHK	Paraquat	2.00	1.75	UGL	87.5	(50-150)
MS	Paraquat	5.0	4.49	UGL	89.8	(70-130)
MSD	Paraquat	5.0	4.42	UGL	88.4	(70-130)
MS_2ND	Paraquat	5.0	3.91	UGL	78.2	(70-130)
RPD_MS	Paraquat	89.800	88.400	UGL	1.6	(0-20)

QC Ref #327594

Endothall

QC	Analyte	Spiked	Recovered	Units	Yield (%)	Limits (%) RPD (%)
MS	Spiked sample	Lab # 26	07170103	UGL		(0-0)
LCS1	Endothall	25	23.6	UGL	94.4	(66-120)
MBLK	Endothall	ND	<5.0	UGL		
MRL_CHK	Endothall	5.00	4.98	UGL	99.6	(50-150)
MS	Endothall	25	24.3	UGL	97.2	(66-120)
MSD	Endothall	25	24.6	UGL	98.4	(66-120)

750 Royal Oaks Drive, Suite 100 Morrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc. (continued)

MS_2ND	Endothall	25	23.3	UGL	93.2	(66-120)
RPD_MS	Endothall	97.200	98.400	UGL	1.2	(0-20)

QC Ref #327689

525 Semivolatiles by GC/MS

QC	Analyte	Spiked	Recovered	Units	Yield (%)	Limits (%) RPD (%)
LCS1	2,4-Dinitrotoluene	2	2.18	UGL	109.0	(70-130)
LCS2	2,4-Dinitrotoluene	2	2.32	UGL	116.0	(70-130)
MBLK	2,4-Dinitrotoluene	ND	<0.1	UGL		
MS	2,4-Dinitrotoluene	2	2.12	UGL	106.0	(70-130)
RPD_LCS	2,4-Dinitrotoluene	109.000	116.000	UGL	6.2	(0-20)
LCS1	alpha-Chlordane	2	2.36	UGL	118.0	(70-130)
LCS2	alpha-Chlordane	2	2.37	UGL	118.5	(70-130)
MBLK	alpha-Chlordane	ND	<0.05	UGL		
MS	alpha-Chlordane	2	2.54	UGL	127.0	(70-130)
RPD_LCS	alpha-Chlordane	118.000	118.500	UGL	0.4	(0-20)
LCS1	Diazinon (Qualitative)	2	2.10	UGL	105.0	(70-130)
LCS2	Diazinon (Qualitative)	2	2.27	UGL	113.5	(70-130)
MBLK	Diazinon (Qualitative)	ND	<0.1	UGL		
MS	Diazinon (Qualitative)	2	2.29	UGL	114.5	(70-130)
RPD_LCS	Diazinon (Qualitative)	105.000	113.500	UGL	7.8	(0-20)
MS	Spiked sample	Lab # 26	07150012	NONE		(0-0)
LCS1	Acenaphthylene	2	2.03	UGL	101.5	(70-130)
LCS2	Acenaphthylene	2	2.09	UGL	104.5	(70-130)
MBLK	Acenaphthylene	ND	<0.1	UGL		
MS	Acenaphthylene	2	2.04	UGL	102.0	(70-130)
RPD_LCS	Acenaphthylene	101.500	104.500	UGL	2.9	(0-20)
LCS1	Alachlor	2	2.48	UGL	124.0	(70-130)
LCS2	Alachlor	2	2.52	UGL	126.0	(70-130)
MBLK	Alachlor	ND	<0.05	UGL		
MS	Alachlor	2	2.57	UGL	128.5	(70-130)
RPD_LCS	Alachlor	124.000	126.000	UGL	1.6	(0-20)
LCS1	Aldrin	2	2.22	UGL	111.0	(70-130)
LCS2	Aldrin	2	2.29	UGL	114.5	(70-130)

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc. (continued)

MBLK	Aldrin	ND	<0.05	UGL		
MS	Aldrin	2	2.23	UGL	111.5	(70-130)
RPD_LCS	Aldrin	111.000	114.500	UGL	3.1	(0-20)
LCS1	Anthracene	2	1.91	UGL	95.5	(70-130)
LCS2	Anthracene	2	1.98	UGL	99.0	(70-130)
MBLK	Anthracene	ND	<0.02	UGL		
MS	Anthracene	2	1.98	UGL	99.0	(70-130)
RPD_LCS	Anthracene	95.500	99.000	UGL	3.6	(0-20)
LCS1	Atrazine	2	2.07	UGL	103.5	(70-130)
LCS2	Atrazine	2	2.37	UGL	118.5	(70-130)
MBLK	Atrazine	ND	<0.05	UGL		
MS	Atrazine	2	2.35	UGL	117.5	(70-130)
RPD_LCS	Atrazine	103.500	118.500	UGL	13.5	(0-20)
LCS1	Benz(a)Anthracene	2	1.85	UGL	92.5	(70-130)
LCS2	Benz(a)Anthracene	2	1.99	UGL	99.5	(70-130)
MBLK	Benz(a)Anthracene	ND	<0.05	UGL		
MS	Benz(a)Anthracene	2	2.00	UGL	100.0	(70-130)
RPD_LCS	Benz(a)Anthracene	92.500	99.500	UGL	7.3	(0-20)
LCS1	Benzo(a)pyrene	2	1.56	UGL	78.0	(70-130)
LCS2	Benzo(a)pyrene	2	1.71	UGL	85.5	(70-130)
MBLK	Benzo(a)pyrene	ND	<0.02	UGL		
MS	Benzo (a) pyrene	2	1.78	UGL	89.0	(70-130)
RPD_LCS	Benzo(a)pyrene	78.000	85.500	UGL	9.2	(0-20)
LCS1	Benzo(b)Fluoranthene	2	1.77	UGL	88.5	(70-130)
LCS2	Benzo(b)Fluoranthene	2	1.97	UGL	98.5	(70-130)
MBLK	Benzo(b)Fluoranthene	ND	<0.02	UGL		
MS	Benzo(b)Fluoranthene	2	1.95	UGL	97.5	(70-130)
RPD_LCS	Benzo(b)Fluoranthene	88.500	98.500	UGL	10.7	(0-20)
LCS1	Benzo(g,h,i)Perylene	2	1.72	UGL	86.0	(70-130)
LCS2	Benzo(g,h,i)Perylene	2	1.93	UGL	96.5	(70-130)
MBLK	Benzo(g,h,i)Perylene	ND	<0.05	UGL		
MS	Benzo(g,h,i)Perylene	2	1.83	UGL	91.5	(70-130)
RPD_LCS	Benzo(g,h,i)Perylene	86.000	96.500	UGL	11.5	(0-20)
LCS1	Benzo(k)Fluoranthene	2	1.70	UGL	85.0	(70-130)
LCS2	Benzo(k)Fluoranthene	2	1.87	UGL	93.5	(70-130)

Sierra Environmental Monitoring, Inc. (continued)

MDT 1/						
MBLK	Benzo(k) Fluoranthene	ND	<0.02	UGL		
MS	Benzo(k) Fluoranthene	2	1.85	UGL	92.5	(70-130)
RPD_LCS	Benzo(k) Fluoranthene	85.000	93.500	UGL	9.5	(0-20)
LCS1	Di(2-Ethylhexyl)phthalate	2	2.19	UGL	109.5	(70-130)
LCS2	Di(2-Ethylhexyl)phthalate	2	2.37	UGL	118.5	(70-130)
MBLK	Di(2-Ethylhexyl)phthalate	ND	<0.6	UGL		
MS	Di(2-Ethylhexyl)phthalate	2	2.30	UGL	115.0	(70-130)
RPD_LCS	Di(2-Ethylhexyl)phthalate	109.500	118.500	UGL	7.9	(0-20)
LCS1	Butylbenzylphthalate	2	2.18	UGL	109.0	(70-130)
LCS2	Butylbenzylphthalate	2	2.31	UGL	115.5	(70-130)
MBLK	Butylbenzylphthalate	ND	<0.5	UGL		
MS	Butylbenzylphthalate	2	2.39	UGL	119.5	(70-130)
RPD_LCS	Butylbenzylphthalate	109.000	115.500	UGL	5.8	(0-20)
LCS1	Bromacil	2	2.36	UGL	118.0	(70-130)
LCS2	Bromacil	2	2.59	UGL	129.5	(70-130)
MBLK	Bromacil	ND	<0.2	UGL		
MS	Bromacil	2	2.48	UGL	124.0	(70-130)
RPD_LCS	Bromacil	118.000	129.500	UGL	9.3	(0-20)
LCS1	Butachlor	2	2.33	UGL	116.5	(70-130)
LCS2	Butachlor	2	2.47	UGL	123.5	(70-130)
MBLK	Butachlor	ND	<0.05	UGL		
MS	Butachlor	2	2.45	UGL	122.5	(70-130)
RPD_LCS	Butachlor	116.500	123.500	UGL	5.8	(0-20)
LCS1	Caffeine by method 525mod	2	1.97	UGL	98.5	(83-125)
LCS2	Caffeine by method 525mod	2	2.35	UGL	117.5	(83-125)
MBLK	Caffeine by method 525mod	ND	<0.02	UGL		
MS	Caffeine by method 525mod	2	2.35	UGL	117.5	(83-125)
RPD_LCS	Caffeine by method 525mod	98.500	117.500	UGL	17.6	(0-20)
LCS1	Chrysene	2	2.01	UGL	100.5	(70-130)
LCS2	Chrysene	2	2.07	UGL	103.5	(70-130)
MBLK	Chrysene	ND	<0.02	UGL		
MS	Chrysene	2	2.09	UGL	104.5	(70-130)
RPD_LCS	Chrysene	100.500	103.500	UGL	2.9	(0-20)
LCS1	Dibenz(a,h)Anthracene	2	1.72	UGL	86.0	(70-130)
LCS2	Dibenz(a,h)Anthracene	2	1.91	UGL	95.5	(70-130)

Sierra Environmental Monitoring, Inc. (continued)

MELK	Dibenz(a,h)Anthracene	ND	<0.05	UGL		
MS	Dibenz(a,h)Anthracene	2	1.71	UGL	85.5	(70-130)
RPD_LCS	Dibenz(a,h)Anthracene	86.000	95.500	UGL	10.5	(0-20)
LCS1	Di-(2-Ethylhexyl)adipate	2	2.18	UGL	109.0	(70-130)
LCS2	Di-(2-Ethylhexyl)adipate	2	2.42	UGL	121.0	(70-130)
MBLK	Di-(2-Ethylhexyl)adipate	ND	<0.6	UGL		
MS	Di-(2-Ethylhexyl)adipate	2	2.37	UGL	118.5	(70-130)
RPD_LCS	Di-(2-Ethylhexyl)adipate	109.000	121.000	UGL	10.4	(0-20)
LCS1	Diethylphthalate	2	2.21	UGL	110.5	(70-130)
LCS2	Diethylphthalate	2	2.31	UGL	115.5	(70-130)
MBLK	Diethylphthalate	ND	<0.5	UGL		
MS	Diethylphthalate	2	2.32	UGL	116.0	(70-130)
RPD_LCS	Diethylphthalate	110.500	115.500	UGL	4.4	(0-20)
LCS1	Dieldrin	2	2.25	UGL	112.5	(70-130)
LCS2	Dieldrin	2	2.29	UGL	114.5	(70-130)
MBLK	Dieldrin	ND	<0.2	UGL		
MS	Dieldrin	2	2.34	UGL	117.0	(70-130)
RPD_LCS	Dieldrin	112.500	114.500	UGL	1.8	(0-20)
LCS1	Dimethylphthalate	2	2.21	UGL	110.5	(70-130)
LCS2	Dimethylphthalate	2	2.30	UGL	115.0	(70-130)
MBLK	Dimethylphthalate	ND	<0.5	UGL		
MS	Dimethylphthalate	2	2.22	UGL	111.0	(70-130)
RPD_LCS	Dimethylphthalate	110.500	115.000	UGL	4.0	(0-20)
LCS1	Dimethoate	2	1.78	UGL	89.0	(80-123)
LCS2	Dimethoate	2	2.11	UGL	105.5	(80-123)
MBLK	Dimethoate	ND	<0.1	UGL		
MS	Dimethoate	2	1.88	UGL	94.0	(80-123)
RPD_LCS	Dimethoate	89.000	105.500	UGL	17.0	(0-20)
LCS1	Di-n-Butylphthalate	2	2.76	UGL	138.0	(70-130)
LCS2	Di-n-Butylphthalate	2	2.91	UGL	145.5	(70-130)
MBLK	Di-n-Butylphthalate	ND	<1.0	UGL		
MS	Di-n-Butylphthalate	2	3.33	UGL	166.5	(70-130)
RPD_LCS	Di-n-Butylphthalate	138.000	145.500	UGL	5.3	(0-20)
LCS1	Endrin	2	2.36	UGL	118.0	(70-130)
LCS2	Endrin	2	2.52	UGL	126.0	(70-130)

Sierra Environmental Monitoring, Inc. (continued)

MBLK Endrin <0.1 ND UGL MS Endrin 2 2.67 UGL 133.5 (70-130) RPD_LCS Endrin 118.000 126.000 UGL 6.6 (0-20) LCS1 Fluoranthene 2 2.16 UGT. 108 0 (70-130) LCS2 Fluoranthene 2 2.24 UGL 112.0 (70-130) MBLK Fluoranthene ND <0.1 UGT. MS Fluoranthene 2 2.27 UGL 113.5 (70-130) RPD_LCS Fluoranthene 108.000 112.000 UGL 3.6 (0-20) LCS1 Fluorene 2 2.04 UGL 102.0 (70-130) LCS2 Fluorene 2.12 2 UGU 106.0 (70-130) MBLK Fluorene ND <0.05 UGL MS Fluorene 2 2.09 UGL 104.5 (70-130) RPD LCS Fluorene 102.000 106.000 UGL 3.8 (0-20) LCS1 gamma-Chlordane 2 2.27 UGL 113.5 (70-130) LCS2 gamma-Chlordane 2 2.39 UGL 119.5 (70-130) MBLK gamma-Chlordane <0.05 NT UGL MS gamma-Chlordane 2 2.56 UGL 128.0 (70-130) RPD_LCS gamma-Chlordane 113.500 119.500 UGL 5.2 (0-20) LCS1 Hexachlorobenzene 2 2.11 UGL 105.5 (70-130) LCS2 Hexachlorobenzene 2 2.22 UGL 111.0 (70-130) MBLK Hexachlorobenzene ND <0.05 UGL. MS Hexachlorobenzene 2 2.27 UGL 113.5 (70-130) RPD_LCS Hexachlorobenzene 105.500 111.000 UGL 5.1 (0-20) LCS1 Hexachlorocyclopentadiene 2 1.50 UGL 75.0 (70-130) LCS2 Hexachlorocyclopentadiene 2 1.63 (70-130) UGL 81.5 Hexachlorocyclopentadiene MBLK ND <0.05 UGL MS Hexachlorocyclopentadiene 2 1.82 UGL. 91.0 (70-130) RPD LCS Hexachlorocyclopentadiene 75.000 81.500 UGL 8.3 (0-20) LCS1 Heptachlor 2 2.36 UGL 118.0 (70-130) LCS2 Heptachlor 2 2.41 UGL 120.5 (70-130) MBLK Heptachlor ND <0.04 UGL MS Heptachlor 2 2.61 UGL 130.5 (70-130) RPD_LCS Heptachlor 118.000 120.500 UGL 2.1 (0-20) LCS1 Heptachlor Epoxide (isomer B) 2.42 2 UGL 121.0 (70-130) LCS2 Heptachlor Epoxide (isomer B) 2 2.52 UGL 126.0 (70-130)

Spikes which exceed Limits and Method Blanks with positive results are highlighted by <u>Underlining</u>. Criteria for MS and DUP are advisory only, batch control is based on LCS. Criteria for duplicates are advisory only, unless otherwise specified in the method.

Laboratory QC Report #179167

750 Royal Oaks Drive, Suite 100 Monrovia, California 91016-3629 Tel: 626 386 1100 Fax: 626 386 1101 1 800 566 LABS (1 800 566 5227)

Sierra Environmental Monitoring, Inc. (continued)

MBLK	Heptachlor Epoxide (isomer B)	ND	<0.02	UGL		
MS	Heptachlor Epoxide (isomer B)	2	2.54	UGL	127.0	(70-130)
LCS1	Indeno(1,2,3,c,d)Pyrene	2	1.72	UGL	86.0	(70-130)
LCS2	Indeno(1,2,3,c,d)Pyrene	2	1.94	UGL	97.0	(70-130)
MBLK	Indeno(1,2,3,c,d)Pyrene	ND	<0.05	UGL		
MS	Indeno(1,2,3,c,d)Pyrene	2	1.81	UGL	90.5	(70-130)
RPD_LCS	Indeno(1,2,3,c,d)Pyrene	86.000	97.000	UGL	12.0	(0-20)
LCS1	Isophorone	2	2.14	UGL	107.0	(70-130)
LCS2	Isophorone	2	2.25	UGL	112.5	(70-130)
MBLK	Isophorone	ND	<0.5	UGL		
MS	Isophorone	2	2.15	UGL	107.5	(70-130)
RPD_LCS	Isophorone	107.000	112.500	UGL	5.0	(0-20)
LCS1	Lindane	2	2.27	UGL	113.5	(70-130)
LCS2	Lindane	2	2.28	UGL	114.0	(70-130)
MBLK	Lindane	ND	<0.02	UGL		
MS	Lindane	2	2.21	UGL	110.5	(70-130)
RPD_LCS	Lindane	113.500	114.000	UGL	0.4	(0-20)
LCS1	Methoxychlor	2	1.88	UGL	94.0	(70-130)
LCS2	Methoxychlor	2	2.11	UGL	105.5	(70-130)
MBLK	Methoxychlor	ND	<0.1	UGL		
MS	Methoxychlor	2	2.22	UGL	111.0	(70-130)
RPD_LCS	Methoxychlor	94.000	105.500	UGL	11.5	(0-20)
LCS1	Metribuzin	2	2.34	UGL	117.0	(70-130)
LCS2	Metribuzin	2	2.43	UGL	121.5	(70-130)
MBLK	Metribuzin	ND	<0.05	UGL		
MS	Metribuzin	2	2.27	UGL	113.5	(70-130)
RPD_LCS	Metribuzin	117.000	121.500	UGL	з.8	(0-20)
LCS1	Molinate	2	2.18	UGL	109.0	(70-130)
LCS2	Molinate	2	2.25	UGL	112.5	(70-130)
MBLK	Molinate	ND	<0.1	UGL		
MS	Molinate	2	2.17	UGL	108.5	(70-130)
RPD_LCS	Molinate	109.000	112.500	UGL	3.2	(0-20)
LCS1	Metolachlor	2	2.38	UGL	119.0	(70-130)
LCS2	Metolachlor	2	2.49	UGL	124.5	(70-130)
MBLK	Metolachlor	ND	<0.05	UGL		

Sierra Environmental Monitoring, Inc. (continued)

MS	Metolachlor	2	2.49	UGL	124.5	(70-130)
RPD_LCS	Metolachlor	119.000	124.500	UGL	4.5	(0-20)
LCS1	trans-Nonachlor	2	2.28	UGL	114.0	(70-130)
LCS2	trans-Nonachlor	2	2.35	UGL	117.5	(70-130)
MBLK	trans-Nonachlor	ND	<0.05	UGL		
MS	trans-Nonachlor	2	2.45	UGL	122.5	(70-130)
RPD_LCS	trans-Nonachlor	114.000	117.500	UGL	3.0	(0-20)
LCS1	Pentachlorophenol	8	8.50	UGL	106.2	(70-130)
LCS2	Pentachlorophenol	8	9.46	UGL	118.3	(70-130)
MBLK	Pentachlorophenol	ND	<1.0	UGL		
MS	Pentachlorophenol	8	9.68	UGL	121.0	(70-130)
RPD_LCS	Pentachlorophenol	106.250	118.250	UGL	10.7	(0-20)
LCS1	Phenanthrene	2	2.20	UGL	110.0	(70-130)
LCS2	Phenanthrene	2	2.24	UGL	112.0	(70-130)
MBLK	Phenanthrene	ND	<0.02	UGL		
MS	Phenanthrene	2	2.29	UGL	114.5	(70-130)
RPD_LCS	Phenanthrene	110.000	112.000	UGL	1.8	(0-20)
RPD_LCS	Prometryn	9.000	9.000	UGL	0.0	(0-20)
LCS1	Propachlor	2	2.24	UGL	112.0	(70-130)
LCS2	Propachlor	2	2.41	UGL	120.5	(70-130)
MBLK	Propachlor	ND	<0.05	UGL		
MS	Propachlor	2	2.32	UGL	116.0	(70-130)
RPD_LCS	Propachlor	112.000	120.500	UGL	7.3	(0-20)
LCS1	Pyrene	2	2.10	UGL	105.0	(70-130)
LCS2	Pyrene	2	2.22	UGL	111.0	(70-130)
MBLK	Pyrene	ND	<0.05	UGL		
MS	Pyrene	2	2.22	UGL	111.0	(70-130)
RPD_LCS	Pyrene	105.000	111.000	UGL	5.6	(0-20)
LCS1	Simazine	2	2.06	UGL	103.0	(70-130)
LCS2	Simazine	2	2.37	UGL	118.5	(70-130)
MBLK	Simazine	ND	<0.05	UGL		
MS	Simazine	2	2.32	UGL	116.0	(70-130)
RPD_LCS	Simazine	103.000	118.500	UGL	14.0	(0-20)
LCS1	Perylene-d12	100	75	%R	75.0	(70-130)
LCS2	Perylene-dl2	100	79	₽R	79.0	(70-130)

Sierra Environmental Monitoring, Inc. (continued) Laboratory QC Report #179167

MS	Aldicarb (Temik)	10.0	10.8	UGL	108.0	(70-130)
MSD	Aldicarb (Temik)	10.0	10.9	UGL	109.0	(70-130)
RPD_MS	Aldicarb (Temik)	108.000	109.000	UGL	0.9	(0-20)
LCS2	Aldicarb sulfone	10.0	9.36	UGL	93.6	(70-130)
MBLK	Aldicarb sulfone	ND	<0.5	UGL		
MRL_CHK	Aldicarb sulfone	0.50	0.554	UGL	110.8	(50-150)
MS	Aldicarb sulfone	10.0	10.3	UGL	103.0	(70-130)
MSD	Aldicarb sulfone	10.0	10.2	UGL	102.0	(70-130)
RPD_MS	Aldicarb sulfone	103.000	102.000	UGL	1.0	(0-20)
LCS2	Aldicarb sulfoxide	10.0	9.41	UGL	94.1	(70-130)
MBLK	Aldicarb sulfoxide	ND	<0.5	UGL		
MRL_CHK	Aldicarb sulfoxide	0.50	0.581	UGL	116.2	(50-150)
MS	Aldicarb sulfoxide	10.0	10.3	UGL	103.0	(70-130)
MSD	Aldicarb sulfoxide	10.0	10.3	UGL	103.0	(70-130)
RPD_MS	Aldicarb sulfoxide	103.000	103.000	UGL	0.0	(0-20)
LCS2	Baygon (Propoxur)	10.0	9.39	UGL	93.9	(70-130)
MBLK	Baygon (Propoxur)	ND	<0.5	UGL		
MRL_CHK	Baygon (Propoxur)	0.50	0.612	UGL	122.4	(50-150)
MS	Baygon (Propoxur)	10.0	10.4	UGL	104.0	(70-130)
MSD	Baygon (Propoxur)	10.0	10.3	UGL	103.0	(70-130)
RPD_MS	Baygon (Propoxur)	104.000	103.000	UGL	1.0	(0-20)
LCS2	Carbofuran (Furadan)	10.0	9.56	UGL	95.6	(70-130)
MBLK	Carbofuran (Furadan)	ND	<0.5	UGL		
MRL_CHK	Carbofuran (Furadan)	0.50	0.641	UGL	128.2	(50-150)
MS	Carbofuran (Furadan)	10.0	10.3	UGL	103.0	(70-130)
MSD	Carbofuran (Furadan)	10.0	10.5	UGL	105.0	(70-130)
RPD_MS	Carbofuran (Furadan)	103.000	105.000	UGL	1.9	(0-20)
LCS2	Carbaryl	10.0	9.30	UGL	93.0	(70-130)
MBLK	Carbaryl	ND	<0.5	UGL		
MRL_CHK	Carbaryl	0.50	0.548	UGL	109.6	(50-150)
MS	Carbaryl	10.0	10.2	UGL	102.0	(70-130)
MSD	Carbaryl	10.0	10.5	UGL	105.0	(70-130)
RPD_MS	Carbaryl	102.000	105.000	UGL	2.9	(0-20)
LCS2	Methiocarb	10.0	8.84	UGL	88.4	(70-130)
MBLK	Methiocarb	ND	<0.5	UGL		

Custody Sela Indact Sal Yes No None retu Sample Temperature Ter Degrees C *K	Relinquished By: Received By: Relinquished By: Reduced By Laboratory:	Rollinguisheet/By: Wald C B		1406 05730 1 JLRG -	nple	Sampled by: NV 873VII- Sign Deg (2 Deg evice)	0 Spath McCarra	Client Name Intrawest Placement	SIERRA ENVIRONMENTAL MONITORING, INC. 1135 FINANCIAL BOULEVARD - RENO - NEVADA - 89502 PHONE: (775) 857 - 2400 FAX: (775) 857 - 2404 E-Mail sem@sem-anal
Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous signature of the disposed of at client expense. The analytical results associated with this COC apply only they are received by the laboratory. The liability of the laboratory is limited to the amount paid for the report. Terms: Net thirty days on approved credit. * <i>KEY:</i> Sample Type: 1=Drinking Water, 2=Surface Water, 3=Ground Water, 4=Waste Water, 5=Soil, 6=I Preservative: 1=NaOH, 2=NaOH + ZnOAC, 3=HNO3, 4=H2SO4, 5=Na2S2O3, 6=None, 7=Other	Stacey Smithson	Dele Ci Bugenig		2 1, 2, 17, 2, 1	Preservative* See Key Below	SIL	Ste Doc Phone/Fax # 775-332-1247 <u>Blud</u> Fix 332-1199 Report Attention: Date Bugenis Feb: Logic	Purchase Order	ytical.com
days after results are reported unless other arrangements are made. Hazardous samples will be ed of at client expense. The analytical results associated with this COC apply only to the samples as poratory. The liability of the laboratory is limited to the amount paid for the report. approved credit. 1=Drinking Water, 2=Surface Water, 3=Ground Water, 4=Waste Water, 5=Soil, 6=RCRA, 7=Other 1=NaOH, 2=NaOH + ZnOAC, 3=HNO3, 4=H2SO4, 5=Na2S2O3, 6=None, 7=Other	SEM	ELOI LOGIL			CA T Cma Ma Au	Der of Cor $R_1 + 1 < 2$ $R_1 + 1 < 2$ $R_2 + 1$	ntainers 2 - toxin) tions f la 220 2	And lyses Requested	
nade. Hazardous samples will be nis COC apply only to the samples as paid for the report. e Water, 5=Soil, 6=RCRA, 7=Other 3, 6=None, 7=Other	90/H/L	07/141/06		beyond held there		48 H 	×tand	1 Turnaround Time	CHAIN OF GUSTODY RECORD
SEM COC Form Revised 02/01	09:13	09113				Lab Use Only Sub-Sample	X ≅ ∣ čes	Compliance Monitoring	