

Vegetation restoration from piñon-juniper control treatments

Bruce Roundy, Jordan Bybee, Kert Young, April Hulet, Zachary Aanderud, Nathan Cline, Rick Miller, Robin Tausch, and Jeanne Chambers

What do we have against these trees, anyway?

Courtesy Brad Jessop

Stansbury Mountains 1901

Stansbury Mountains 2004

Big Pole Fire August 2009

Resilience theory and practice

From Briske et al. 2008. http://jornada.nmsu.edu/sites/default/files/briskeSRM08.pdf

TDI= Tree/(Tree +Shrub+Tall Grass cover)

PHASE I

- Trees are sparse
- Shrubs and herbaceous perennials dominate
- Tree cover: <15%
- TDI:0-0.34

PHASE II

- Trees, shrubs, and perennial herbaceous are co-dominant
- Tree cover: 15-45%
- TDI:>0.34-0.67

PHASE III

- Trees are dominant
- Perennial herbaceous and shrub cover sparse
- Tree cover: >45%
- TDI:>0.67

Pre-treatment vegetation

Herbaceous biomass (kg/ha)

250 200 150 100 50 0 20 40 60 80 Tree cover (%)

Shrub biomass (kg/ha)

Decreases:

- Shrub and perennial herbaceous biomass
- Cover
- Diversity
- Carbon sequestration
- Wildlife habitat
- Watershed function

Increases:

- Canopy fuels
- Intense fire
- Weed dominance
- Erosion

Extensive research

Tree reduction at different infilling phases on:

Fuel, vegetation, soils

SageSTEP study

Shred study

Shred study: Expansion vs Tree sites

	Expansion	Tree climax
Soil depth	> 0.5 m	< 0.5 m
Coarse fragments	Lower	Higher
Tree age	< 150 years	> 150 years
Romme et al 2009	Wooded shrublands	Persistent woodlands

Mechanistic or microsite research

Effects of:

- Tree reduction
- Litter cover
- Shred cover

On:

- Hydrology
- Soil water/temperature
- Microbes, nutrients
- Seedling establishment

Fuels

Mechanical

Shred

Prescribed fire

Cut and drop

Wildfire

Wildfire

Wildfire

Courtesy Brad Jessop

Treatment fuel effects

30% Pretreatment Tree Cover

Young et al 2014 IJWLF

Shredded woody fuels decrease with time since shredding

Avoiding wildfire damage after mechanical treatments may require prescribed fire

Stansbury cover loss (%) 1 year after Big Pole fire

Regional responses

Shrub cover

Perennial herbaceous cover

Residual trees and sagebrush seedlings

Sagebrush seedlings/m²

Miller et al 2014 REM

Sagebrush seedlings

Cheatgrass cover

How much cheatgrass cover makes an at-risk phase?

Figure 3-7—Changes in fuelbed and fire regime properties caused by the invasion of nonnative annual grasses into native sagebrush-steppe in the Intermountain West of North America.

Brooks 2008

Tall grass suppresses cheatgrass

More perennial herbaceous cover=less cheatgrass cover

Bybee 2013

Shredding increases cheatgrass cover; seeding suppresses it Bybee 2013

Why these responses?

- Nutrients?
- Microbes?
- Soil water?
- Soil temperature?

Resource growth pool

Brooks 2008

Ryel et al. 2008; Leffler and Ryel 2012

Increased soil water availability

Site and treatment effects

Burn treatments had warmer soils

How do Site environmental characteristics influence cheatgrass and perennial cover?

Sites with > 14% cheatgrass cover over sites with less cover

- Temperature variation indicators increase slightly
- 23 kWh/m² increase in solar radiation
- 10% increase in % sand
- 6% decrease in % silt
- 5% decrease in % N
- 2% decrease in % C

 We are developing regression and niche based classification models to help determine the site potential following shredding.

Soil water repellency affects N and soil water availability to seedlings

Shredding increased:

 Time of soil water availability and temperatures

Young et al 2013 **FEM**

Inorganic N

Seedling biomass

Young et al 2013 **REM**

Shredding increased N mineralization in interspaces and available P in canopies and canopy edges

Aanderud et al submitted

Shredding increased frequency of cheatgrass and perennial grasses

Aanderud et al submitted

Conclusions

<u>Objective</u>	<u>Action</u>	<u>Guidelines</u>
Maintain shrubs	Mechanical	< 20% tree cover
Reduce fuels	Prescribed fire	Phase I to minimize cheatgrass
Minimize cheatgrass	Mechanical	< 40% tree cover
	Seed	When cheatgrass >10%

Follow-up may be necessary for mechanical

Conclusions

- Mechanically reduce trees at < 20% tree cover to maintain shrubs
- Tall perennial grasses respond well to mechanical treatments, even at Phase II-III
- Tree reduction and especially fire can increase cheatgrass on warmer sites
- Fire reduces woody fuels best, but mechanical treatments encourage more resilience
- Post-mechanical treatment fuels control may be necessary

Conclusions

- Tree reduction increases resource availability, modifies microclimate
- What you have before affects what you get after
- Fire reduces fuels but also sagebrush
- Mechanical treatments change fuels, keep shrubs, increase herbaceous
- Waiting to treat increases tree fuels and loses shrub cover
- Some sites more susceptible to weeds than others
- Weedy sites should be seeded